目标检测评价标准

评价训练效果的值——精准度(precision)、召回率(recall)、准确率(accuracy)、交除并(IoU)

TP是正样本预测为正样本

FP是负样本预测为正样本

FN是本为正,错误的认为是负样本

TN是本为负,正确的认为是负样本

precision就是在识别出来的图片中(预测为正样本的图片是识别出的图片),TP所占的比值:

precision=TP/(TP+FP)

recall就是被正确识别出来的正样本个数与测试集中所有正样本的个数的比值:

recall=TP/(TP+FN)

accuracy=(TP+TN)/(TP+FP+FN+TN)

IoU就是系统预测出来的框与原来图片中标记的框的重合程度。即检测结果Detection Result与 Ground Truth 的交集比上它们的并集,即为检测的准确率:

IoU=(DetectionResult?GroundTruth)/(DetectionResult?GroundTruth)

mAP是多类的检测中,取每个类AP的平均值。AP(average precision)就是这个曲线下的面积,这里average等于是对recall取平均。而mAP(mean average precision)的mean,是对所有类别取平均。

原文地址:https://www.cnblogs.com/yumoye/p/11022804.html

时间: 2024-10-14 08:10:31

目标检测评价标准的相关文章

VOC数据集 目标检测

最近在做与目标检测模型相关的工作,很多都要求VOC格式的数据集. PASCAL VOC挑战赛 (The PASCAL Visual Object Classes )是一个世界级的计算机视觉挑战赛, PASCAL全称:Pattern Analysis, Statical Modeling and Computational Learning,是一个由欧盟资助的网络组织.很多模型都基于此数据集推出.比如目标检测领域的yolo,ssd等等. voc数据集结构 看下目录结构 :~/git_project

目标检测论文(尤其针对一些小目标的可能改进方法)

------------------------------------------------------------------------About Face detection------------------------------------------------------------------------1.Finding Tiny Faces    Code:https://github.com/peiyunh/tiny    小目标检测难3大原因:目标本身尺度变化.图像

目标检测的评价标准mAP, Precision, Recall, Accuracy

目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 Average Precision mAP 参考资料 metrics 评价方法 注意,在多分类问题中,评价方法是逐个类计算的,不是所有类一起算,是只针对一个类算,每个类别有自己的指标值! TP , FP , TN , FN 概念 TP = 预测为positive 且ground-truth和预测一致

我收集的一些目标检测、跟踪、识别标准测试视频集和图像数据库

一个网友收集的运动目标检测,阴影检测的标准测试视频 http://blog.csdn.net/sunbaigui/article/details/6363390 很权威的change detection检测视频集,里面有将近20种主流算法在这个测试集上的运行结果和ROC,PRA曲线 http://changedetection.net/ VIVID Tracking Evaluation Web Site http://vision.cse.psu.edu/data/vividEval/data

目标检测方法——SSD

SSD论文阅读(Wei Liu--[ECCV2016]SSD Single Shot MultiBox Detector) 目录 作者 文章的选择原因 方法概括 方法细节 相关背景补充 实验结果 与相关文章的对比 总结 作者 文章的选择原因 性能好,single stage 方法概括 文章的方法介绍 SSD主要用来解决目标检测的问题(定位+分类),即输入一张待测图像,输出多个box的位置信息和类别信息 测试时,输入一张图像到SSD中,网络输出一个下图最右边的tensor(多维矩阵),对该矩阵进行

目标检测与跟踪的研究热点以及发展趋势

目标检测与跟踪的研究热点以及发展趋势: 1) 场景信息与目标状态的融合 场景信息包含了丰富的环境上下文信息, 对场景信息进行分析及充分利用, 能够有效地获取场景的先验知识, 降低复杂的背景环境以及场景中与目标相似的物体的干扰; 同样地, 对目标的准确描述有助于提升检测与跟踪算法的准确性与鲁棒性. 总之,尝试研究结合背景信息和前景目标信息的分析方法,融合场景信息与目标状态, 将有助于提高算法的实用性能. 2) 多维度. 多层级信息融合 为了提高对运动目标表观描述的准确度与可信性, 现有的检测与跟踪

平均精度均值(mAP)——目标检测模型性能统计量

在机器学习领域,对于大多数常见问题,通常会有多个模型可供选择.当然,每个模型会有自己的特性,并会受到不同因素的影响而表现不同. 每个模型的好坏是通过评价它在某个数据集上的性能来判断的,这个数据集通常被叫做“验证/测试”数据集.这个性能由不同的统计量来度量,包括准确率( accuracy ).精确率( precision ).召回率( recall )等等.选择我们会根据某个特定的应用场景来选择相应的统计量.而对每个应用来说,找到一个可以客观地比较模型好坏的度量标准至关重要. 在本文,我们将会讨论

目标检测综述

这篇综述是我统计信号处理的作业,在这里分享一下,将介绍计算机视觉中的目标检测任务,论述自深度学习以来目标检测的常见方法,着重讲yolo算法,并且将yolo算法与其他的one-stage以及two-stage方法进行比较. 目录 1.介绍 2.YOLO 2.1 YOLOv1 2.2 YOLOv2 2.3 YOLOv3 3.其他方法 RCNN FastRCNN FasterRCNN SSD RetinaNet 4.实验结果比较 5.总结 参考文献 1. 介绍 目标检测在现实中的应用很广泛,我们需要检

分类和目标检测的性能评价指标

对于深度学习的网络模型,希望其速度快,内存小,精度高.因此需要量化指标来评价这些性能,常用的指标有:mAP(平均准确度均值,精度指标), FPS(每秒处理的图片数量或每张图片处理需要时间,同样硬件条件下的速度指标) , 模型参数大小(内存大小指标). 1.mAP (mean Avearage Precision) mAP指的是各类别的AP平均值,而AP指PR曲线的面积(precision和Recall关系曲线),因此得先了解下precision(精确率)和recall(召回率),以及相关的acc