HDU 5410 CRB and His Birthday (01背包,完全背包,混合)

题意:有n种商品,每种商品中有a个糖果,如果买这种商品就送多b个糖果,只有第一次买的时候才送。现在有m元,最多能买多少糖果?

思路:第一次买一种商品时有送糖果,对这一次进行一次01背包,也就是只能买一次。然后对这种商品来一次完全背包,此时不送糖果,也可以多买。

 1 #include <bits/stdc++.h>
 2 #define pii pair<int,int>
 3 #define INF 0x7f7f7f7f
 4 #define LL long long
 5 using namespace std;
 6 const int N=2050;
 7 LL dp[N];
 8 int n, m, w[N], a[N], b[N];
 9
10 LL cal()
11 {
12     memset(dp, 0, sizeof(dp));
13     for(int i=1; i<=n; i++)  //礼物
14     {
15         for(int j=m; j-w[i]>=0; j--) //先来一次01背包
16         {
17             if( dp[j-w[i]]+ a[i] + b[i] > dp[j] )
18                 dp[j]=dp[j-w[i]]+ a[i] + b[i]  ;
19         }
20         for(int j=0; j+w[i]<=m; j++) //再来一次完全背包
21         {
22             if( dp[j+w[i]] < dp[j]+a[i] )
23                 dp[ j+w[i] ] = dp[j]+a[i] ;
24         }
25     }
26     LL sum=-1;
27     for(int i=m; i>0; i--)    sum=max(sum, dp[i]);
28     return sum;
29 }
30
31 int main()
32 {
33     freopen("input.txt", "r", stdin);
34     int t;
35     cin>>t;
36     while(t--)
37     {
38         scanf("%d %d", &m, &n);
39         for(int i=1; i<=n; i++)    scanf("%d%d%d",&w[i], &a[i], &b[i]);
40         printf("%lld\n", cal());
41     }
42
43     return 0;
44 }

AC代码

时间: 2024-10-11 04:54:59

HDU 5410 CRB and His Birthday (01背包,完全背包,混合)的相关文章

hdu 5410 CRB and His Birthday 01背包和完全背包

#include<stdio.h> #include<string.h> #include<vector> #include<queue> #include<algorithm> using namespace std; int main() { int _,i,j,m,n,k,a[1024],b[1024],w[1024],dp[2048]; scanf("%d\n",&_); while(_--) { scanf(

hdu 5410 CRB and His Birthday(混合背包)

Problem Description Today is CRB's birthday. His mom decided to buy many presents for her lovely son. She went to the nearest shop with M Won(currency unit). At the shop, there are N kinds of presents. It costs Wi Won to buy one present of i-th kind.

HDU 5410 CRB and His Birthday ——(完全背包变形)

对于每个物品,如果购买,价值为A[i]*x+B[i]的背包问题. 先写了一发是WA的= =.代码如下: 1 #include <stdio.h> 2 #include <algorithm> 3 #include <string.h> 4 #include <set> 5 using namespace std; 6 typedef pair<int,int> pii; 7 8 pii dp[2005]; 9 int w[1005],A[1005

HDU 5410 CRB and His Birthday

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5410 Problem Description Today is CRB's birthday. His mom decided to buy many presents for her lovely son.She went to the nearest shop with M Won(currency unit).At the shop, there are N kinds of presents

hdu 5410 CRB and His Birthday(动态规划)

题目: CRB and His Birthday Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 748    Accepted Submission(s): 395 Problem Description Today is CRB's birthday. His mom decided to buy many presents for

HDU 5410 CRB and His Birthday(DP)

CRB and His Birthday Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 83    Accepted Submission(s): 45 Problem Description Today is CRB's birthday. His mom decided to buy many presents for her l

HDU 5410 CRB and His Birthday (2015年多校比赛第10场)

1.题目描述:点击打开链接 2.解题思路:本题是完全背包问题的一种变形.根据题意描述,每种物品的价值随着A[i]是线性变化的,但是并不随着B[i]线性变化,B[i]仅仅是在第一次挑选第i件物品是才算入,其他时候均不算入.因此,这里的状态要比普通的完全背包增加一个维度:是否是第一次选第i件物品,即用(i,j,flag)表示当前背包容量为j时,是否为第一次选第i件物品时的最大价值.那么不难得到如下状态转移方程: dp(i+1,j,0)=max{dp(i,j,0),dp(i,j,1)}; dp(i+1

HDU 5410(2015多校10)-CRB and His Birthday(完全背包)

题目地址:HDU 5410 题意:有M元钱,N种礼物,若第i种礼物买x件的话,会有Ai*x+Bi颗糖果,现给出每种礼物的单价.Ai值与Bi值,问最多能拿到多少颗糖果. 思路:完全背包问题. dp[j][1]在当前物品时花钱为j的并且买过当前物品的最大值. dp[j][0]不买当前这件物品此前花钱为j的的最大值. 每种物品的价值随Ai线性变化,但是不随B[i]线性变化,B[i]仅是在第一次挑选第i件物品是才算入,其他时候均不算入.所以我们可以写出状态转移方程: dp[j][0]=max(dp[j]

背包DP HDOJ 5410 CRB and His Birthday

题目传送门 题意:有n个商店,有m金钱,一个商店买x件商品需要x*w[i]的金钱,得到a[i] * x + b[i]件商品(x > 0),问最多能买到多少件商品 01背包+完全背包:首先x == 1时,得到a[i] + b[i],若再买得到的是a[i],那么x == 1的情况用01背包思想,x > 1时就是在01的基础上的完全背包.背包dp没刷过专题,这么简单的题也做不出来:( /************************************************* Author