Day4 装饰器——迭代器——生成器

一 装饰器

1.1 函数对象

一 函数是第一类对象,即函数可以当作数据传递

#1 可以被引用
#2 可以当作参数传递
#3 返回值可以是函数
#3 可以当作容器类型的元素

二 利用该特性,优雅的取代多分支的if

def foo():
    print(‘foo‘)

def bar():
    print(‘bar‘)

dic={
    ‘foo‘:foo,
    ‘bar‘:bar,
}
while True:
    choice=input(‘>>: ‘).strip()
    if choice in dic:
        dic[choice]()

1.2 函数嵌套

一 函数的嵌套调用

def max(x,y):
    return x if x > y else y

def max4(a,b,c,d):
    res1=max(a,b)
    res2=max(res1,c)
    res3=max(res2,d)
    return res3
print(max4(1,2,3,4))

二 函数的嵌套定义

def f1():
    def f2():
        def f3():
            print(‘from f3‘)
        f3()
    f2()

f1()
f3() #报错,为何?请看下一小节

1.3 名称空间和作用域

一 什么是名称空间?

#名称空间:存放名字的地方,三种名称空间,(之前遗留的问题x=1,1存放于内存中,那名字x存放在哪里呢?名称空间正是存放名字x与1绑定关系的地方)

二 名称空间的加载顺序

python test.py
#1、python解释器先启动,因而首先加载的是:内置名称空间
#2、执行test.py文件,然后以文件为基础,加载全局名称空间
#3、在执行文件的过程中如果调用函数,则临时产生局部名称空间

三 名字的查找顺序

局部名称空间--->全局名称空间--->内置名称空间

#需要注意的是:在全局无法查看局部的,在局部可以查看全局的,如下示例

# max=1
def f1():
    # max=2
    def f2():
        # max=3
        print(max)
    f2()
f1()
print(max)

四 作用域

#1、作用域即范围
        - 全局范围(内置名称空间与全局名称空间属于该范围):全局存活,全局有效
      - 局部范围(局部名称空间属于该范围):临时存活,局部有效
#2、作用域关系是在函数定义阶段就已经固定的,与函数的调用位置无关,如下
x=1
def f1():
    def f2():
        print(x)
    return f2
x=100
def f3(func):
    x=2
    func()
x=10000
f3(f1())

#3、查看作用域:globals(),locals()

LEGB 代表名字查找顺序: locals -> enclosing function -> globals -> __builtins__
locals 是函数内的名字空间,包括局部变量和形参
enclosing 外部嵌套函数的名字空间(闭包中常见)
globals 全局变量,函数定义所在模块的名字空间
builtins 内置模块的名字空间

五 global与nonlocal关键字

1.4 闭包函数

一 什么是闭包?

#内部函数包含对外部作用域而非全局作用域的引用

#提示:之前我们都是通过参数将外部的值传给函数,闭包提供了另外一种思路,包起来喽,包起呦,包起来哇

        def counter():
            n=0
            def incr():
                nonlocal n
                x=n
                n+=1
                return x
            return incr

        c=counter()
        print(c())
        print(c())
        print(c())
        print(c.__closure__[0].cell_contents) #查看闭包的元素

二 闭包的意义与应用

#闭包的意义:返回的函数对象,不仅仅是一个函数对象,在该函数外还包裹了一层作用域,这使得,该函数无论在何处调用,优先使用自己外层包裹的作用域
#应用领域:延迟计算(原来我们是传参,现在我们是包起来)
    from urllib.request import urlopen

    def index(url):
        def get():
            return urlopen(url).read()
        return get

    baidu=index(‘http://www.baidu.com‘)
    print(baidu().decode(‘utf-8‘))

1.5 装饰器

一 为何要用装饰器

#开放封闭原则:对修改封闭,对扩展开放

二 什么是装饰器

装饰器他人的器具,本身可以是任意可调用对象,被装饰者也可以是任意可调用对象。
强调装饰器的原则:1 不修改被装饰对象的源代码 2 不修改被装饰对象的调用方式
装饰器的目标:在遵循1和2的前提下,为被装饰对象添加上新功能

三 装饰器的使用

import time
def timmer(func):
    def wrapper(*args,**kwargs):
        start_time=time.time()
        res=func(*args,**kwargs)
        stop_time=time.time()
        print(‘run time is %s‘ %(stop_time-start_time))
        return res
    return wrapper

@timmer
def foo():
    time.sleep(3)
    print(‘from foo‘)
foo()

无参装饰器

无参装饰器

def auth(driver=‘file‘):
    def auth2(func):
        def wrapper(*args,**kwargs):
            name=input("user: ")
            pwd=input("pwd: ")

            if driver == ‘file‘:
                if name == ‘egon‘ and pwd == ‘123‘:
                    print(‘login successful‘)
                    res=func(*args,**kwargs)
                    return res
            elif driver == ‘ldap‘:
                print(‘ldap‘)
        return wrapper
    return auth2

@auth(driver=‘file‘)
def foo(name):
    print(name)

foo(‘egon‘)

有参装饰器

有参装饰器

四 装饰器语法

被装饰函数的正上方,单独一行
        @deco1
        @deco2
        @deco3
        def foo():
            pass

        foo=deco1(deco2(deco3(foo)))

五 装饰器补充:wraps

from functools import wraps

def deco(func):
    @wraps(func) #加在最内层函数正上方
    def wrapper(*args,**kwargs):
        return func(*args,**kwargs)
    return wrapper

@deco
def index():
    ‘‘‘哈哈哈哈‘‘‘
    print(‘from index‘)

print(index.__doc__)

六 练习

一:编写函数,(函数执行的时间是随机的)
二:编写装饰器,为函数加上统计时间的功能
三:编写装饰器,为函数加上认证的功能

四:编写装饰器,为多个函数加上认证的功能(用户的账号密码来源于文件),要求登录成功一次,后续的函数都无需再输入用户名和密码
注意:从文件中读出字符串形式的字典,可以用eval(‘{"name":"egon","password":"123"}‘)转成字典格式

五:编写装饰器,为多个函数加上认证功能,要求登录成功一次,在超时时间内无需重复登录,超过了超时时间,则必须重新登录

六:编写下载网页内容的函数,要求功能是:用户传入一个url,函数返回下载页面的结果

七:为题目五编写装饰器,实现缓存网页内容的功能:
具体:实现下载的页面存放于文件中,如果文件内有值(文件大小不为0),就优先从文件中读取网页内容,否则,就去下载,然后存到文件中

扩展功能:用户可以选择缓存介质/缓存引擎,针对不同的url,缓存到不同的文件中

八:还记得我们用函数对象的概念,制作一个函数字典的操作吗,来来来,我们有更高大上的做法,在文件开头声明一个空字典,然后在每个函数前加上装饰器,完成自动添加到字典的操作

九 编写日志装饰器,实现功能如:一旦函数f1执行,则将消息2017-07-21 11:12:11 f1 run写入到日志文件中,日志文件路径可以指定
注意:时间格式的获取
import time
time.strftime(‘%Y-%m-%d %X‘)

#题目一:
import time,random
ran = random.random()
def foo():
    time.sleep(ran)
    print("Done")
foo()
#题目二:
import time,random
ran = random.random()
def timer(func):
    def inner():
        start_time = time.time()
        func()
        stop_time = time.time()
        print("TIME>> %s" %(stop_time-start_time))
    return inner
@timer
def foo():
    time.sleep(ran)
    print("Done")
foo()
#题目三:
import time,random
ran = random.random()
def auth(bar):
    def inner():
        info = {
            "lizhong":123,
            "hehe":234,
        }
        name = input("user>>").strip()
        if name in info:
            pwd = int(input("pwd>>").strip())
            if pwd == info[name]:
                print("Login success")
                bar()
            else:
                print("Login faild")
        else:
            print("No such user")
    return inner
def timer(func):
    def inner():
        start_time = time.time()
        func()
        stop_time = time.time()
        print("TIME>> %s" %(stop_time-start_time))
    return inner
@auth
@timer
def foo():
    time.sleep(ran)
    print("Done")
while True:
    foo()
#题目四:
db=‘db.txt‘
login_status={‘user‘:None,‘status‘:False}
def auth(auth_type=‘file‘):
    def auth2(func):
        def wrapper(*args,**kwargs):
            if login_status[‘user‘] and login_status[‘status‘]:
                return func(*args,**kwargs)
            if auth_type == ‘file‘:
                with open(db,encoding=‘utf-8‘) as f:
                    dic=eval(f.read())
                name=input(‘username: ‘).strip()
                password=input(‘password: ‘).strip()
                if name in dic and password == dic[name]:
                    login_status[‘user‘]=name
                    login_status[‘status‘]=True
                    res=func(*args,**kwargs)
                    return res
                else:
                    print(‘username or password error‘)
            elif auth_type == ‘sql‘:
                pass
            else:
                pass
        return wrapper
    return auth2

@auth()
def index():
    print(‘index‘)

@auth(auth_type=‘file‘)
def home(name):
    print(‘welcome %s to home‘ %name)

# index()
# home(‘egon‘)

#题目五
import time,random
user={‘user‘:None,‘login_time‘:None,‘timeout‘:0.000003,}

def timmer(func):
    def wrapper(*args,**kwargs):
        s1=time.time()
        res=func(*args,**kwargs)
        s2=time.time()
        print(‘%s‘ %(s2-s1))
        return res
    return wrapper

def auth(func):
    def wrapper(*args,**kwargs):
        if user[‘user‘]:
            timeout=time.time()-user[‘login_time‘]
            if timeout < user[‘timeout‘]:
                return func(*args,**kwargs)
        name=input(‘name>>: ‘).strip()
        password=input(‘password>>: ‘).strip()
        if name == ‘egon‘ and password == ‘123‘:
            user[‘user‘]=name
            user[‘login_time‘]=time.time()
            res=func(*args,**kwargs)
            return res
    return wrapper

@auth
def index():
    time.sleep(random.randrange(3))
    print(‘welcome to index‘)

@auth
def home(name):
    time.sleep(random.randrange(3))
    print(‘welcome %s to home ‘ %name)

index()
home(‘egon‘)

#题目六:
import requests
import os
def wget(url):
    res = requests.get(url)
    return res
print(wget("http://baidu.com/"))
#题目七:简单版本
import requests
import os
cache_file=‘cache.txt‘
def make_cache(func):
    def wrapper(*args,**kwargs):
        if not os.path.exists(cache_file):
            with open(cache_file,‘w‘):pass

        if os.path.getsize(cache_file):
            with open(cache_file,‘r‘,encoding=‘utf-8‘) as f:
                res=f.read()
        else:
            res=func(*args,**kwargs)
            with open(cache_file,‘w‘,encoding=‘utf-8‘) as f:
                f.write(res)
        return res
    return wrapper

@make_cache
def get(url):
    return requests.get(url).text

# res=get(‘https://www.python.org‘)

# print(res)

#题目七:扩展版本
import requests,os,hashlib
engine_settings={
    ‘file‘:{‘dirname‘:‘./db‘},
    ‘mysql‘:{
        ‘host‘:‘127.0.0.1‘,
        ‘port‘:3306,
        ‘user‘:‘root‘,
        ‘password‘:‘123‘},
    ‘redis‘:{
        ‘host‘:‘127.0.0.1‘,
        ‘port‘:6379,
        ‘user‘:‘root‘,
        ‘password‘:‘123‘},
}

def make_cache(engine=‘file‘):
    if engine not in engine_settings:
        raise TypeError(‘egine not valid‘)
    def deco(func):
        def wrapper(url):
            if engine == ‘file‘:
                m=hashlib.md5(url.encode(‘utf-8‘))
                cache_filename=m.hexdigest()
                cache_filepath=r‘%s/%s‘ %(engine_settings[‘file‘][‘dirname‘],cache_filename)

                if os.path.exists(cache_filepath) and os.path.getsize(cache_filepath):
                    return open(cache_filepath,encoding=‘utf-8‘).read()

                res=func(url)
                with open(cache_filepath,‘w‘,encoding=‘utf-8‘) as f:
                    f.write(res)
                return res
            elif engine == ‘mysql‘:
                pass
            elif engine == ‘redis‘:
                pass
            else:
                pass

        return wrapper
    return deco

@make_cache(engine=‘file‘)
def get(url):
    return requests.get(url).text

# print(get(‘https://www.python.org‘))
print(get(‘https://www.baidu.com‘))

#题目八
route_dic={}

def make_route(name):
    def deco(func):
        route_dic[name]=func
    return deco
@make_route(‘select‘)
def func1():
    print(‘select‘)

@make_route(‘insert‘)
def func2():
    print(‘insert‘)

@make_route(‘update‘)
def func3():
    print(‘update‘)

@make_route(‘delete‘)
def func4():
    print(‘delete‘)

print(route_dic)

#题目九
import time
import os

def logger(logfile):
    def deco(func):
        if not os.path.exists(logfile):
            with open(logfile,‘w‘):pass

        def wrapper(*args,**kwargs):
            res=func(*args,**kwargs)
            with open(logfile,‘a‘,encoding=‘utf-8‘) as f:
                f.write(‘%s %s run\n‘ %(time.strftime(‘%Y-%m-%d %X‘),func.__name__))
            return res
        return wrapper
    return deco

@logger(logfile=‘aaaaaaaaaaaaaaaaaaaaa.log‘)
def index():
    print(‘index‘)

index()

二 迭代器和生成器

2.1 迭代器

一 迭代的概念

#迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值
while True: #只是单纯地重复,因而不是迭代
    print(‘===>‘) 

l=[1,2,3]
count=0
while count < len(l): #迭代
    print(l[count])
    count+=1

二 为何要有迭代器?什么是可迭代对象?什么是迭代器对象?

#1、为何要有迭代器?
对于序列类型:字符串、列表、元组,我们可以使用索引的方式迭代取出其包含的元素。但对于字典、集合、文件等类型是没有索引的,若还想取出其内部包含的元素,则必须找出一种不依赖于索引的迭代方式,这就是迭代器

#2、什么是可迭代对象?
可迭代对象指的是内置有__iter__方法的对象,即obj.__iter__,如下
‘hello‘.__iter__
(1,2,3).__iter__
[1,2,3].__iter__
{‘a‘:1}.__iter__
{‘a‘,‘b‘}.__iter__
open(‘a.txt‘).__iter__

#3、什么是迭代器对象?
可迭代对象执行obj.__iter__()得到的结果就是迭代器对象
而迭代器对象指的是即内置有__iter__又内置有__next__方法的对象

文件类型是迭代器对象
open(‘a.txt‘).__iter__()
open(‘a.txt‘).__next__()

#4、注意:
迭代器对象一定是可迭代对象,而可迭代对象不一定是迭代器对象

三 迭代器对象的使用

dic={‘a‘:1,‘b‘:2,‘c‘:3}
iter_dic=dic.__iter__() #得到迭代器对象,迭代器对象即有__iter__又有__next__,但是:迭代器.__iter__()得到的仍然是迭代器本身
iter_dic.__iter__() is iter_dic #True

print(iter_dic.__next__()) #等同于next(iter_dic)
print(iter_dic.__next__()) #等同于next(iter_dic)
print(iter_dic.__next__()) #等同于next(iter_dic)
# print(iter_dic.__next__()) #抛出异常StopIteration,或者说结束标志

#有了迭代器,我们就可以不依赖索引迭代取值了
iter_dic=dic.__iter__()
while 1:
    try:
        k=next(iter_dic)
        print(dic[k])
    except StopIteration:
        break

#这么写太丑陋了,需要我们自己捕捉异常,控制next,python这么牛逼,能不能帮我解决呢?能,请看for循环

四 for循环

#基于for循环,我们可以完全不再依赖索引去取值了
dic={‘a‘:1,‘b‘:2,‘c‘:3}
for k in dic:
    print(dic[k])

#for循环的工作原理
#1:执行in后对象的dic.__iter__()方法,得到一个迭代器对象iter_dic
#2: 执行next(iter_dic),将得到的值赋值给k,然后执行循环体代码
#3: 重复过程2,直到捕捉到异常StopIteration,结束循环

五 迭代器的优缺点

#优点:
  - 提供一种统一的、不依赖于索引的迭代方式
  - 惰性计算,节省内存
#缺点:
  - 无法获取长度(只有在next完毕才知道到底有几个值)
  - 一次性的,只能往后走,不能往前退

2.2 生成器

一 什么是生成器

#只要函数内部包含有yield关键字,那么函数名()的到的结果就是生成器,并且不会执行函数内部代码

def func():
    print(‘====>first‘)
    yield 1
    print(‘====>second‘)
    yield 2
    print(‘====>third‘)
    yield 3
    print(‘====>end‘)

g=func()
print(g) #<generator object func at 0x0000000002184360>

二 生成器就是迭代器

g.__iter__
g.__next__
#2、所以生成器就是迭代器,因此可以这么取值
res=next(g)
print(res)

三 练习

1、自定义函数模拟range(1,7,2)

2、模拟管道,实现功能:tail -f access.log | grep ‘404‘

#题目一:
def my_range(start,stop,step=1):
    while start < stop:
        yield start
        start+=step

#执行函数得到生成器,本质就是迭代器
obj=my_range(1,7,2) #1  3  5
print(next(obj))
print(next(obj))
print(next(obj))
print(next(obj)) #StopIteration

#应用于for循环
for i in my_range(1,7,2):
    print(i)

#题目二
import time
def tail(filepath):
    with open(filepath,‘rb‘) as f:
        f.seek(0,2)
        while True:
            line=f.readline()
            if line:
                yield line
            else:
                time.sleep(0.2)

def grep(pattern,lines):
    for line in lines:
        line=line.decode(‘utf-8‘)
        if pattern in line:
            yield line

for line in grep(‘404‘,tail(‘access.log‘)):
    print(line,end=‘‘)

#测试
with open(‘access.log‘,‘a‘,encoding=‘utf-8‘) as f:
    f.write(‘出错啦404\n‘)

四 协程函数

#yield关键字的另外一种使用形式:表达式形式的yield
def eater(name):
    print(‘%s 准备开始吃饭啦‘ %name)
    food_list=[]
    while True:
        food=yield food_list
        print(‘%s 吃了 %s‘ % (name,food))
        food_list.append(food)

g=eater(‘egon‘)
g.send(None) #对于表达式形式的yield,在使用时,第一次必须传None,g.send(None)等同于next(g)
g.send(‘蒸羊羔‘)
g.send(‘蒸鹿茸‘)
g.send(‘蒸熊掌‘)
g.send(‘烧素鸭‘)
g.close()
g.send(‘烧素鹅‘)
g.send(‘烧鹿尾‘)

五 练习
1、编写装饰器,实现初始化协程函数的功能

2、实现功能:grep  -rl  ‘python‘  /etc

#题目一:
def init(func):
    def wrapper(*args,**kwargs):
        g=func(*args,**kwargs)
        next(g)
        return g
    return wrapper
@init
def eater(name):
    print(‘%s 准备开始吃饭啦‘ %name)
    food_list=[]
    while True:
        food=yield food_list
        print(‘%s 吃了 %s‘ % (name,food))
        food_list.append(food)

g=eater(‘egon‘)
g.send(‘蒸羊羔‘)

#题目二:
#注意:target.send(...)在拿到target的返回值后才算执行结束
import os
def init(func):
    def wrapper(*args,**kwargs):
        g=func(*args,**kwargs)
        next(g)
        return g
    return wrapper

@init
def search(target):
    while True:
        filepath=yield
        g=os.walk(filepath)
        for dirname,_,files in g:
            for file in files:
                abs_path=r‘%s\%s‘ %(dirname,file)
                target.send(abs_path)
@init
def opener(target):
    while True:
        abs_path=yield
        with open(abs_path,‘rb‘) as f:
            target.send((f,abs_path))
@init
def cat(target):
    while True:
        f,abs_path=yield
        for line in f:
            res=target.send((line,abs_path))
            if res:
                break
@init
def grep(pattern,target):
    tag=False
    while True:
        line,abs_path=yield tag
        tag=False
        if pattern.encode(‘utf-8‘) in line:
            target.send(abs_path)
            tag=True
@init
def printer():
    while True:
        abs_path=yield
        print(abs_path)

g=search(opener(cat(grep(‘你好‘,printer()))))
# g.send(r‘E:\CMS\aaa\db‘)
g=search(opener(cat(grep(‘python‘,printer()))))
g.send(r‘E:\CMS\aaa\db‘)

六 yield总结

#1、把函数做成迭代器
#2、对比return,可以返回多次值,可以挂起/保存函数的运行状态

2.3 面向过程编程

#1、首先强调:面向过程编程绝对不是用函数编程这么简单,面向过程是一种编程思路、思想,而编程思路是不依赖于具体的语言或语法的。言外之意是即使我们不依赖于函数,也可以基于面向过程的思想编写程序

#2、定义
面向过程的核心是过程二字,过程指的是解决问题的步骤,即先干什么再干什么

基于面向过程设计程序就好比在设计一条流水线,是一种机械式的思维方式

#3、优点:复杂的问题流程化,进而简单化

#4、缺点:可扩展性差,修改流水线的任意一个阶段,都会牵一发而动全身

#5、应用:扩展性要求不高的场景,典型案例如linux内核,git,httpd

#6、举例
流水线1:
用户输入用户名、密码--->用户验证--->欢迎界面

流水线2:
用户输入sql--->sql解析--->执行功能

三 三元表达式、列表推导式、生成器表达式

3.1 三元表达式

name=input(‘姓名>>: ‘)
res=‘SB‘ if name == ‘alex‘ else ‘NB‘
print(res)

3.2 列表推导式

#1、示例
egg_list=[]
for i in range(10):
    egg_list.append(‘鸡蛋%s‘ %i)

egg_list=[‘鸡蛋%s‘ %i for i in range(10)]

#2、语法
[expression for item1 in iterable1 if condition1
for item2 in iterable2 if condition2
...
for itemN in iterableN if conditionN
]
类似于
res=[]
for item1 in iterable1:
    if condition1:
        for item2 in iterable2:
            if condition2
                ...
                for itemN in iterableN:
                    if conditionN:
                        res.append(expression)

#3、优点:方便,改变了编程习惯,可称之为声明式编程

3.3 生成器表达式

#1、把列表推导式的[]换成()就是生成器表达式

#2、示例:生一筐鸡蛋变成给你一只老母鸡,用的时候就下蛋,这也是生成器的特性
>>> chicken=(‘鸡蛋%s‘ %i for i in range(5))
>>> chicken
<generator object <genexpr> at 0x10143f200>
>>> next(chicken)
‘鸡蛋0‘
>>> list(chicken) #因chicken可迭代,因而可以转成列表
[‘鸡蛋1‘, ‘鸡蛋2‘, ‘鸡蛋3‘, ‘鸡蛋4‘,]

#3、优点:省内存,一次只产生一个值在内存中

3.4 练习

1、将names=[‘egon‘,‘alex_sb‘,‘wupeiqi‘,‘yuanhao‘]中的名字全部变大写

2、将names=[‘egon‘,‘alex_sb‘,‘wupeiqi‘,‘yuanhao‘]中以sb结尾的名字过滤掉,然后保存剩下的名字长度

3、求文件a.txt中最长的行的长度(长度按字符个数算,需要使用max函数)

4、求文件a.txt中总共包含的字符个数?思考为何在第一次之后的n次sum求和得到的结果为0?(需要使用sum函数)

5、思考题

with open(‘a.txt‘) as f:
    g=(len(line) for line in f)
print(sum(g)) #为何报错?

6、文件shopping.txt内容如下

求总共花了多少钱?

打印出所有商品的信息,格式为[{‘name‘:‘xxx‘,‘price‘:333,‘count‘:3},...]

求单价大于10000的商品信息,格式同上

#题目一
names=[‘egon‘,‘alex_sb‘,‘wupeiqi‘,‘yuanhao‘]
names=[name.upper() for name in names]

#题目二
names=[‘egon‘,‘alex_sb‘,‘wupeiqi‘,‘yuanhao‘]
names=[len(name) for name in names if not name.endswith(‘sb‘)]

#题目三
with open(‘a.txt‘,encoding=‘utf-8‘) as f:
    print(max(len(line) for line in f))

#题目四
with open(‘a.txt‘, encoding=‘utf-8‘) as f:
    print(sum(len(line) for line in f))
    print(sum(len(line) for line in f)) #求包换换行符在内的文件所有的字符数,为何得到的值为0?
    print(sum(len(line) for line in f)) #求包换换行符在内的文件所有的字符数,为何得到的值为0?

#题目五(略)

#题目六:每次必须重新打开文件或seek到文件开头,因为迭代完一次就结束了
with open(‘a.txt‘,encoding=‘utf-8‘) as f:
    info=[line.split() for line in f]
    cost=sum(float(unit_price)*int(count) for _,unit_price,count in info)
    print(cost)

with open(‘a.txt‘,encoding=‘utf-8‘) as f:
    info=[{
        ‘name‘: line.split()[0],
        ‘price‘: float(line.split()[1]),
        ‘count‘: int(line.split()[2]),
    } for line in f]
    print(info)

with open(‘a.txt‘,encoding=‘utf-8‘) as f:
    info=[{
        ‘name‘: line.split()[0],
        ‘price‘: float(line.split()[1]),
        ‘count‘: int(line.split()[2]),
    } for line in f if float(line.split()[1]) > 10000]
    print(info)

四 json & pickle 模块

之前我们学习过用eval内置方法可以将一个字符串转成python对象,不过,eval方法是有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,eval就不管用了,所以eval的重点还是通常用来执行一个字符串表达式,并返回表达式的值。

import json
x="[null,true,false,1]"
print(eval(x)) #报错,无法解析null类型,而json就可以
print(json.loads(x)) 

什么是序列化?

我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。

为什么要序列化?

1:持久保存状态

需知一个软件/程序的执行就在处理一系列状态的变化,在编程语言中,‘状态‘会以各种各样有结构的数据类型(也可简单的理解为变量)的形式被保存在内存中。

内存是无法永久保存数据的,当程序运行了一段时间,我们断电或者重启程序,内存中关于这个程序的之前一段时间的数据(有结构)都被清空了。

在断电或重启程序之前将程序当前内存中所有的数据都保存下来(保存到文件中),以便于下次程序执行能够从文件中载入之前的数据,然后继续执行,这就是序列化。

具体的来说,你玩使命召唤闯到了第13关,你保存游戏状态,关机走人,下次再玩,还能从上次的位置开始继续闯关。或如,虚拟机状态的挂起等。

2:跨平台数据交互

序列化之后,不仅可以把序列化后的内容写入磁盘,还可以通过网络传输到别的机器上,如果收发的双方约定好实用一种序列化的格式,那么便打破了平台/语言差异化带来的限制,实现了跨平台数据交互。

反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。

如何序列化之json和pickle:

json

如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。

JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:

import json

dic={‘name‘:‘alvin‘,‘age‘:23,‘sex‘:‘male‘}
print(type(dic))#<class ‘dict‘>

j=json.dumps(dic)
print(type(j))#<class ‘str‘>

f=open(‘序列化对象‘,‘w‘)
f.write(j)  #-------------------等价于json.dump(dic,f)
f.close()
#-----------------------------反序列化<br>
import json
f=open(‘序列化对象‘)
data=json.loads(f.read())#  等价于data=json.load(f)

pickle

import pickle

dic={‘name‘:‘alvin‘,‘age‘:23,‘sex‘:‘male‘}

print(type(dic))#<class ‘dict‘>

j=pickle.dumps(dic)
print(type(j))#<class ‘bytes‘>

f=open(‘序列化对象_pickle‘,‘wb‘)#注意是w是写入str,wb是写入bytes,j是‘bytes‘
f.write(j)  #-------------------等价于pickle.dump(dic,f)

f.close()
#-------------------------反序列化
import pickle
f=open(‘序列化对象_pickle‘,‘rb‘)

data=pickle.loads(f.read())#  等价于data=pickle.load(f)

print(data[‘age‘])

Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。

时间: 2024-10-10 15:25:01

Day4 装饰器——迭代器——生成器的相关文章

day4装饰器-迭代器&amp;&amp;生成器

一.装饰器 定义:本质是函数,(装饰其他函数)就是为其它函数添加附加功能 原则:1.不能修改被装饰的函数的源代码 2.不能修改被装饰的函数的调用方式 实现装饰器知识储备: 1.函数及“变量” 2.高阶函数 a.把一个函数名当做实参传给另一个函数(在不修改被装饰器函数源代码的情况下为其添加新功能) b.返回值中包含函数名 3.嵌套函数 高阶函数+嵌套函数 = 装饰器 延迟3秒 import time def test1(): time.sleep(3) print('in the test1')

函数嵌套 ,名称空间与作用域 ,闭包函数 ,装饰器 ,迭代器, 生成器 三元表达式,列表解析,生成器表达式 递归与二分法, 内置函数

函数嵌套名称空间与作用域闭包函数装饰器迭代器生成器三元表达式,列表解析,生成器表达式递归与二分法内置函数--------------------------------------------函数的嵌套调用:在调用一个函数的过程中,又调用了其他函数函数的嵌套定义:在一个函数的内部,又定义另外一个函数def max(x,y): if x>y: return x else: return ydef max1(a,b,c,d): res=max(a,b) res2=max(res,c) res3=ma

python_day04 函数嵌套 名称空间和作用域 闭包 装饰器 迭代器 生成器 列表解析 三元表达式 生成器表达式

本节课重要知识点内容如下: 函数嵌套 名称空间和作用域 闭包 装饰器 迭代器 生成器 列表解析 三元表达式 生成器表达式 1.函数嵌套 函数的嵌套调用:在调用一个函数的过程中,又调用了其他函数函数的嵌套定义:在一个函数的内部,又定义另外一个函数 def bar(): print('from nbar')def foo(): print('from foo') bar()foo()def max2(x,y): if x > y: return x else: return ydef max4(a,

&lt;04day&gt;_函数嵌套--闭包函数--装饰器--迭代器--生成器

一.函数的嵌套定义 1.python函数支持嵌套 def f1(): #f1函数的定义 def f2(): #f2函数的定义 print('from f2') def f3(): #f3函数的定义 print('from f3') f2() f1() 嵌套函数--运行结果说明: 1首先调用f1()结果,f1函数为空.担保函f2函数,f2函数有内容打印并且有调用,f2函数包含f3函数,但f3函数无调用. 运行结果: 列子:多个数据之间的大小比较. #!/usr/bin/python # -*- c

函数+装饰器+迭代器+生成器

闭包函数 闭包:定义在内网函数,包含对外部作用域而非全局作用域 范围:一个函数套用1或n个函数 from urllib.request import urlopen #urlopen模块 作用:爬网页 #闭包函数,内部get函数调用外部page函数 def page(url): #调用url def get(): #下载 return urlopen(url).read() #爬网页 return get #返回url值 baidu=page("http://www.baidu.com"

python第四天装饰器+迭代器+生成器

1.函数嵌套:在调用一个函数的过程中,调用了其他函数 def f1(): x=1 def f2(): print('from f2') f2() f1()  2.名称空间与作用域 a. 名称空间:存放名字与变量值绑定关系的地方 (1)内置名称空间:在python解释器启动时产生,存放一些python内置的名字 (2)全局名称空间:在执行文件时产生,存放文件级别定义的名字. (3)局部名称空间:在执行过程中,如果调用了该函数则会产生该函数的局部名称空间.在调用该函数的时候生效,调用结束时失效 加载

day-5 装饰器 迭代器 生成器

1.装饰器 1.1 带参数的装饰器 参数可以用来决定是否执行某个装饰器的某一部分 def outer(flag): def timer(func): def inner(*args,**kwargs): if flag: print('''执行函数之前要做的''') re = func(*args,**kwargs) if flag: print('''执行函数之后要做的''') return re return inner return timer @outer(False) def func

Python学习---装饰器/迭代器/生成器的学习【all】

Python学习---装饰器的学习1210 Python学习---生成器的学习1210 Python学习---迭代器学习1210 原文地址:https://www.cnblogs.com/ftl1012/p/9484145.html

python_装饰器——迭代器——生成器

一.装饰器 1.什么是装饰器? 器=>工具,装饰=>增加功能 1.不修改源代码 2.不修改调用方式 装饰器是在遵循1和2原则的基础上为被装饰对象增加功能的工具 2.实现无参装饰器 1.无参装饰器的模板 def outter(func): def wrapper(*args,**kwargs): res=func(*args,**kwargs) return res return wrapper 2.使用:在被装饰对象正上方单独一行 @无参装饰器名 def foo(): pass 3.实现有参装