code forces 148D Bag of mice (概率DP)

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year‘s Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to
an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black
mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn‘t scare other mice). Princess
draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse
is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0?≤?w,?b?≤?1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10?-?9.

Sample test(s)

input

1 3

output

0.500000000

input

5 5

output

0.658730159

Note

Let‘s go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there
are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess‘ mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so
according to the rule the dragon wins.

题意:一个袋子里有w个白老鼠,b个黑老鼠,王妃和龙依次取,王妃先取,先取到白老鼠

的为胜者,其中龙取老鼠的时候,取出一只后,会有随机的一只老鼠跑出来,而且取老鼠的

时候,每只老鼠取到的概率是一样的,跑出来的概率也是一样的,  让你算王妃赢的概率。

思路: dp[i][j] 表示 白老鼠为i只,黑老鼠为j只时,王妃赢的概率,

有四种状态:

(1)  王妃取到白鼠  。  dp[ i ][ j ] + =  i  / ( i + j ) ;

(2)  王妃取到黒鼠,龙取到白鼠 。    dp[ i ][ j ] + = 0.0 ;

(3) 王妃取到黒鼠,龙取到黑鼠
,跑出来一只黑鼠  。 dp[i][j]+=j/(i+j) * (j-1)*/(i+j-1) * (j-2)*/(i+j-2) * dp[i][j-3];

(4) 王妃取到黒鼠,龙取到黑鼠
,跑出来一只白鼠  。 dp[i][j]+=j*/(i+j) * (j-1)*/(i+j-1) * i*/(i+j-2) * dp[i-1][j-2];

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=1100;

double dp[maxn][maxn];
int n,m;

int main()
{
    while(scanf("%d %d",&n,&m)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        for(int i=1; i<=n; i++)  dp[i][0]=1.0;
        for(int i=1; i<=n; i++)
            for(int j=1; j<=m; j++)
            {
                dp[i][j]+=(i*1.0)/(i+j);
                if(j>=3)   dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * (j-2)*1.0/(i+j-2) * dp[i][j-3];
                if(j>=2)   dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * i*1.0/(i+j-2) * dp[i-1][j-2];
            }
        printf("%.9lf\n",dp[n][m]);
    }
    return 0;
}
时间: 2024-10-11 01:36:53

code forces 148D Bag of mice (概率DP)的相关文章

Codeforces 148D Bag of mice (概率dp)

D. Bag of mice time limit per test:2 seconds memory limit per test:256 megabytes The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, wh

CF 148d Bag of mice 概率DP 好题

D. Bag of mice The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are

CF 148D. Bag of mice[概率dp]

题目链接:http://codeforces.com/problemset/problem/148/D 题目大意:一袋子里有w个白老鼠,b个黑老鼠:A和B轮流抓老鼠(不放回),谁先抓到白老鼠,谁win:因为B粗鲁,每次抓完一只老鼠,会跑出来一只:A first: 求A win的概率: 题目分析: 此类概率dp的状态比较固定,dp(i , j )表示当前状态Awin的概率: 1:  dp[i][0],A win的概率为 1:dp[0][j] 概率为 0: 2:  dp[i][j]     如下四种

Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃圾,大哥拿来了一袋老鼠,其中有w只白老鼠和b只黑老鼠.胡小兔先抓,先抓到白老鼠的人赢. 每次学姐抓完老鼠之后,总会有另外一只老鼠从袋子里自己跑出来(这只老鼠不算任何人抓的),而胡小兔抓老鼠时则不会发生这样的事. 每次袋子里的每只老鼠被抓到的概率相等,当有一只老鼠跑出来的时候,每只老鼠跑出来的几率也相

Bag of mice(概率DP)

Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed

cf 148D Bag of mice

The dragon 选一只老鼠,然后会跑掉一只 the princess选一只老鼠,不会跑出另外的老鼠 求the princess赢的概率 1 #include<iostream> 2 #include<string> 3 #include<cstdio> 4 #include<vector> 5 #include<queue> 6 #include<stack> 7 #include<algorithm> 8 #inc

CodeForces 148D. Bag of mice(概率dp啊 )

题目链接:http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output The dragon and the princess are arguing about what to do on the New Year'

Codeforces 148D Bag of mice:概率dp 记忆化搜索

题目链接:http://codeforces.com/problemset/problem/148/D 题意: 一个袋子中有w只白老鼠,b只黑老鼠. 公主和龙轮流从袋子里随机抓一只老鼠出来,不放回,公主先拿. 公主每次抓一只出来.龙每次在抓一只出来之后,会随机有一只老鼠跳出来(被龙吓的了...). 先抓到白老鼠的人赢.若两人最后都没有抓到白老鼠,则龙赢. 问你公主赢的概率. 题解: 表示状态: dp[i][j] = probability to win(当前公主先手,公主赢的概率) i:剩i只白

CodeForces 148D Bag of mice

概率,$dp$. $dp[i][j][0]$表示还剩下$i$个白猫,$j$个黑猫,公主出手的情况下到达目标状态的概率. $dp[i][j][1]$表示还剩下$i$个白猫,$j$个黑猫,龙出手的情况下到达目标状态的概率. 一开始$dp[i][0][0]$均为$1$,答案为$dp[w][b][0]$.递推式很容易写: $dp[i][j][0]=i/(i+j)+j/(i+j)*dp[i][j-1][1]$ $dp[i][j][1]=j/(i+j)*i/(i+j-1)*dp[i-1][j-1][0]+j