从Softmax回归到Logistic回归

  Softmax回归是Logistic回归在多分类问题上的推广,是有监督的。

  回归的假设函数(hypothesis function)为,我们将训练模型参数,使其能够最小化代价函数:

        

在Softmax回归中,我们解决的是多分类问题,类标y可以取k个不同的值。对于给定的测试输入x,我们想用假设函数针对每一个类别j估算出概率值。也就是说,我们想估计x的每一种分类结果的概率。因此,我们的假设函数将要输出一个k维的向量(向量元素的和为1)来表示这k个估计的概率值。具体地说,我们的假设函数形式如下:

        

其中,···,是模型参数。这一项对概率分布进行归一化,使得所有的概率之和为1。

  为了方便起见,我们同样使用符号来表示全部的模型参数。在实现softmax回归时,将用一个的矩阵来表示会很方便,该矩阵是将,···,按行罗列起来得到的,如下表示:

        

代价函数

  现在介绍softmax回归算法的代价函数。在下面的公式中,是示性函数,其取值规则为:1{值为真的表达式}=1,1{值为假的表达式}=0。代价函数为:

        

上述公式是logistic回归代价函数的推广。可以看到,softmax代价函数与logistic代价函数在形式上非常类似,只是在softmax代价函数中对类标记的k个可能值进行了累加。注意在softmax回归中将x分类为类别j的概率为:

        

对于的最小化问题,目前还没有闭式解决。因此,我们使用迭代的优化算法(例如梯度下降法,或L-BFGS)。经过求导,我们得到梯度公式如下:

        

有了上述偏导数公式后,我们就可以将它带入到梯度下降法等算法中,来最小化。在实现softmax回归算法时,我们通常会使用上述代价函数的一个改进版本。具体来说,就是和权重衰减(weight decay)一起使用。我们接下来介绍使用它的动机和细节。

  softmax回归有一个不寻常的特点:它有一个“冗余”的参数集。为了便于阐述这一特点,假设我们从参数向量中减去了向量,这时,每一个都变成了。此时假设函数变成了

        

也就是说,从中减去完全不影响假设函数的预测结果。这表明前面的softmax回归模型中存在冗余的参数。更正式一点来说,softmax模型被过度参数化了。对于任意一个用于拟合数据的假设函数 ,可以求出多组参数值,这些参数得到的是完全相同的假设函数

  进一步而言,如果参数是代价函数的极小值点,那么同样也是它的极小值点,其中可以为任意向量。因此使最小化的解不是唯一的。(有趣的是,由于仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题。但是Hessian矩阵是奇异的/不可逆的,这会导致采用牛顿法优化就遇到数值计算的问题。)

  注意,当时,我们总是可以将替换为(即替换为全零向量),并且这种变换不会影响假设函数。因此我们可以去掉参数向量(或者其他中的任意一个)而不影响假设函数的表达能力。实际上,与其优化全部的个参数(其中),我们可以令,只优化剩余的个参数,这样算法依然能够正常工作。

  在实际应用中,为了使算法实现更简单清楚,往往保留所有参数,而不任意地将某一参数设置为0。但此时我们需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决softmax回归的参数冗余所带来的数值问题。

时间: 2024-10-12 18:09:08

从Softmax回归到Logistic回归的相关文章

SPSS—回归—二元Logistic回归案例分析

数据分析真不是一门省油的灯,搞的人晕头转向,而且涉及到很多复杂的计算,还是书读少了,小学毕业的我,真是死了不少脑细胞, 学习二元Logistic回归有一段时间了,今天跟大家分享一下学习心得,希望多指教! 二元Logistic,从字面上其实就可以理解大概是什么意思,Logistic中文意思为"逻辑"但是这里,并不是逻辑的意思,而是通过logit变换来命名的,二元一般指"两种可能性"就好比逻辑中的"是"或者"否"一样, Logis

逻辑回归(logistic回归)

前言            以下内容是个人学习之后的感悟,如果有错误之处,还请多多包涵~ 逻辑回归 一.为什么使用logistic回归   一般来说,回归不用在分类问题上,因为回归是连续型模型,而且受噪声影响比较大. Why?  为什么回归一般不用在分类上?其实,很多初学者都会提出这个问题.然而,文字的解释往往不能说服我们,接下来 用图示的方式为大家讲解. 以最简单的分类为例,当y≥0.5时,输出"1":当y<0.5时,输出"0".下面左图,数据样本较好,线性

回归1——Logistic回归

主要思想:根据现有数据对分类边界线建立回归公式,以此进行分类 优点:计算代价不高,易于理解和实现 缺点:容易欠拟合,分类精度可能不高 适用数据类型:数值型和标称型数据 回归的结果为一个数值型数据,利用Sigmoid函数(平缓的阶跃函数)将其归一化到[0,1]之间,之后设定阈值以进行分类. simoid(z) = 1.0/(1+exp(-z)) 回归线方程为:z=w0x0+w1x1+...+wnxn 利用输入数据xi和输出数据zi来估计出最佳的w值 使用梯度上升法寻找最佳w 梯度上升法,用来寻找某

机器学习之线性回归---logistic回归---softmax回归

1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数学模型用于预测或者分类.该方法处理的数据可以是多维的. 讲义最初介绍了一个基本问题,然后引出了线性回归的解决方法,然后针对误差问题做了概率解释.之后介绍了logistic回归.最后上升到理论层次,提出了一般回归. 2 问题引入 这个例子来自http://www.cnblogs.com/LeftNot

1.线性回归、Logistic回归、Softmax回归

本次回归章节的思维导图版总结已经总结完毕,但自我感觉不甚理想.不知道是模型太简单还是由于自己本身的原因,总结出来的东西感觉很少,好像知识点都覆盖上了,但乍一看,好像又什么都没有.不管怎样,算是一次尝试吧,慢慢地再来改进.在这里再梳理一下吧! 线性回归(Linear Regression) 什么是回归? 给定一些数据,{(x1,y1),(x2,y2)-(xn,yn) },x的值来预测y的值,通常地,y的值是连续的就是回归问题,y的值是离散的就叫分类问题. 高尔顿的发现,身高的例子就是回归的典型模型

对线性回归,logistic回归和一般回归的认识

假设有一个房屋销售的数据如下:这个表类似于北京5环左右的房屋价钱,我们可以做出一个图,x轴是房屋的面积.y轴是房屋的售价,如下: 如果来了一个新的面积,假设在销售价钱的记录中没有的,我们怎么办呢? 我们可以用一条曲线去尽量准的拟合这些数据,然后如果有新的输入过来,我们可以在将曲线上这个点对应的值返回.如果用一条直线去拟合,可能是下面 的样子:绿色的点就是我们想要预测的点. 首先给出一些概念和常用的符号. 房屋销售记录表:训练集(training set)或者训练数据(training data)

机器学习(1):Logistic回归原理及其实现

Logistic回归是机器学习中非常经典的一个方法,主要用于解决二分类问题,它是多分类问题softmax的基础,而softmax在深度学习中的网络后端做为常用的分类器,接下来我们将从原理和实现来阐述该算法的思想. 1.原理 a.问题描述 考虑二分类问题,利用回归的思想,拟合特征向量到类别标签的回归,常用Logistic回归.假设已知训练样本集\(D\)的\(n\)个样本 \(\left ( x_{i},t_{i} \right )_{i=1}^{n}\) ,其中\(t_{i}\in \left

【转载】对线性回归,logistic回归和一般回归的认识

对线性回归,logistic回归和一般回归的认识 [转载时请注明来源]:http://www.cnblogs.com/jerrylead JerryLead 2011年2月27日 作为一个机器学习初学者,认识有限,表述也多有错误,望大家多多批评指正. 1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数学模型用于预测或者分类.该方法处理的数据可以是多

对线性回归,logistic回归和一般回归

对线性回归,logistic回归和一般回归 [转自]:http://www.cnblogs.com/jerrylead JerryLead 2011年2月27日 作为一个机器学习初学者,认识有限,表述也多有错误,望大家多多批评指正. 1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数学模型用于预测或者分类.该方法处理的数据可以是多维的. 讲义最初介