linux调度器源码研究 - 概述(一)

本文为原创,转载请注明:http://www.cnblogs.com/tolimit/

引言

调度器作为操作系统的核心部件,具有非常重要的意义,其随着linux内核的更新也不断进行着更新。本系列文章通过linux-3.18.3源码进行调度器的学习和分析,一步一步将linux现有的调度器原原本本的展现出来。此篇文章作为开篇,主要介绍调度器的原理及重要数据结构。

调度器介绍

随着时代的发展,linux也从其初始版本稳步发展到今天,从2.4的非抢占内核发展到今天的可抢占内核,调度器无论从代码结构还是设计思想上也都发生了翻天覆地的变化,其普通进程的调度算法也从O(1)到现在的CFS,一个好的调度算法应当考虑以下几个方面:

  • 公平:保证每个进程得到合理的CPU时间。
  • 高效:使CPU保持忙碌状态,即总是有进程在CPU上运行。
  • 响应时间:使交互用户的响应时间尽可能短。
  • 周转时间:使批处理用户等待输出的时间尽可能短。
  • 吞吐量:使单位时间内处理的进程数量尽可能多。
  • 负载均衡:在多核多处理器系统中提供更高的性能

而整个调度系统至少包含两种调度算法,是分别针对实时进程普通进程,所以在整个linux内核中,实时进程和普通进程是并存的,但它们使用的调度算法并不相同,普通进程使用的是CFS调度算法(红黑树调度)。之后会介绍调度器是怎么调度这两种进程。

进程

上一节已经说明,在linux中,进程主要分为两种,一种为实时进程,一种为普通进程

  • 实时进程:对系统的响应时间要求很高,它们需要短的响应时间,并且这个时间的变化非常小,典型的实时进程有音乐播放器,视频播放器等。
  • 普通进程:包括交互进程和非交互进程,交互进程如文本编辑器,它会不断的休眠,又不断地通过鼠标键盘进行唤醒,而非交互进程就如后台维护进程,他们对IO,响应时间没有很高的要求,比如编译器。

它们在linux内核运行时是共存的,实时进程的优先级为0~99,实时进程优先级不会在运行期间改变(静态优先级),而普通进程的优先级为100~139,普通进程的优先级会在内核运行期间进行相应的改变(动态优先级)。

调度策略

在linux系统中,调度策略分为

  • SCHED_NORMAL:普通进程使用的调度策略,现在此调度策略使用的是CFS调度器。
  • SCHED_FIFO:实时进程使用的调度策略,此调度策略的进程一旦使用CPU则一直运行,直到有比其更高优先级的实时进程进入队列,或者其自动放弃CPU,适用于时间性要求比较高,但每次运行时间比较短的进程。
  • SCHED_RR:实时进程使用的时间片轮转法策略,实时进程的时间片用完后,调度器将其放到队列末尾,这样每个实时进程都可以执行一段时间。适用于每次运行时间比较长的实时进程。

调度

首先,我们需要清楚,什么样的进程会进入调度器进行选择,就是处于TASK_RUNNING状态的进程,而其他状态下的进程都不会进入调度器进行调度。系统发生调度的时机如下

  • 调用cond_resched()时
  • 显式调用schedule()时
  • 从系统调用或者异常中断返回用户空间时
  • 从中断上下文返回用户空间时

当开启内核抢占(默认开启)时,会多出几个调度时机,如下

  • 在系统调用或者异常中断上下文中调用preempt_enable()时(多次调用preempt_enable()时,系统只会在最后一次调用时会调度)
  • 在中断上下文中,从中断处理函数返回到可抢占的上下文时(这里是中断下半部,中断上半部实际上会关中断,而新的中断只会被登记,由于上半部处理很快,上半部处理完成后才会执行新的中断信号,这样就形成了中断可重入)

而在系统启动调度器初始化时会初始化一个调度定时器,调度定时器每隔一定时间执行一个中断,在中断会对当前运行进程运行时间进行更新,如果进程需要被调度,在调度定时器中断中会设置一个调度标志位,之后从定时器中断返回,因为上面已经提到从中断上下文返回时是有调度时机的,在内核源码的汇编代码中所有中断返回处理都必须去判断调度标志位是否设置,如设置则执行schedule()进行调度。而我们知道实时进程和普通进程是共存的,调度器是怎么协调它们之间的调度的呢,其实很简单,每次调度时,会先在实时进程运行队列中查看是否有可运行的实时进程,如果没有,再去普通进程运行队列找下一个可运行的普通进程,如果也没有,则调度器会使用idle进程进行运行。之后的章节会放上代码进行详细说明。

数据结构

在这一节中,我们都是以普通进程作为讲解对象,因为普通进程使用的调度算法为CFS调度算法,它是以红黑树为基础的调度算法,其相比与实时进程的调度算法复杂很多,而实时进程在组织结构上与普通进程没有太大差别,算法也较为简单

组成形式

  图1

从图1 中可以看出来,每个CPU对应包含一个运行队列结构(struct rq),而每个运行队列又包含有其自己的实时进程运行队列(struct rt_rq)、普通进程运行队列(struct cfs_rq)、和一个我自己也不太知道有什么用的dl队列(struct dl_rq),也就是说每个CPU都有他们自己的实时进程运行队列及普通进程运行队列,为了方便,我们在图中只描述普通进程的组织结构(最复杂的也是普通进程的组织结构),而红色se则为当前CPU上正在执行的程序,蓝色为下个将要执行的程序,其实图中并不规范,实际上当进程运行时,会从红黑树中剥离出来,然后设定下一个调度进程,当进程运行时间结束时,再重新放入红黑树中。而为什么CPU0上有两个蓝色将被调度进程,将在组调度中解释。而为什么红黑树中又有一个子红黑树,我们将在调度实体中解释。

组调度(struct task_group)

我们知道,linux是一个多用户系统,如果有两个进程分别属于两个用户,而进程的优先级不同,会导致两个用户所占用的CPU时间不同,这样显然是不公平的(如果优先级差距很大,低优先级进程所属用户使用CPU的时间就很小),所以内核引入组调度。如果基于用户分组,即使进程优先级不同,这两个用户使用的CPU时间都为50%。这就是为什么图1 中CPU0有两个蓝色将被调度的程序,如果task_group1中的运行时间还没有使用完,而当前进程运行时间使用完后,会调度task_group1中的下一个被调度进程;相反,如果task_group1的运行时间使用结束,则调用上一层的下一个被调度进程。
    linux可以以以下两种方式进行进程的分组:

  • 用户ID:按照进程的USER ID进行分组,在对应的/sys/kernel/uid/目录下会生成一个cpu.share的文件,可以通过配置该文件来配置用户所占CPU时间比例。
  • cgourp(control group):生成组用于限制其所有进程,比如我生成一个组(生成后此组为空,里面没有进程),设置其CPU使用率为10%,并把一个进程丢进这个组中,那么这个进程最多只能使用CPU的10%,如果我们将多个进程丢进这个组,这个组的所有进程平分这个10%。

注意的是,这里的进程组概念和fork调用所产生的父子进程组概念不一样,文章所使用的进程组概念全为组调度中进程组的概念。为了管理组调度,内核引进了struct task_group结构,如下:

 1 /* 进程组,用于实现组调度 */
 2 struct task_group {
 3     /* 用于进程找到其所属进程组结构 */
 4     struct cgroup_subsys_state css;
 5
 6 #ifdef CONFIG_FAIR_GROUP_SCHED
 7     /* CFS调度器的进程组变量,在 alloc_fair_sched_group() 中进程初始化及分配内存 */
 8     /* 该进程组在每个CPU上都有对应的一个调度实体,因为有可能此进程组同时在两个CPU上运行(它的A进程在CPU0上运行,B进程在CPU1上运行) */
 9     struct sched_entity **se;
10     /* 进程组在每个CPU上都有一个CFS运行队列(为什么需要,稍后解释) */
11     struct cfs_rq **cfs_rq;
12     /* 用于保存优先级默认为NICE 0的优先级 */
13     unsigned long shares;
14
15 #ifdef    CONFIG_SMP
16     atomic_long_t load_avg;
17     atomic_t runnable_avg;
18 #endif
19 #endif
20
21 #ifdef CONFIG_RT_GROUP_SCHED
22     /* 实时进程调度器的进程组变量,同 CFS */
23     struct sched_rt_entity **rt_se;
24     struct rt_rq **rt_rq;
25
26     struct rt_bandwidth rt_bandwidth;
27 #endif
28
29     struct rcu_head rcu;
30     /* 用于建立进程链表(属于此调度组的进程链表) */
31     struct list_head list;
32
33     /* 指向其上层的进程组,每一层的进程组都是它上一层进程组的运行队列的一个调度实体,在同一层中,进程组和进程被同等对待 */
34     struct task_group *parent;
35     /* 进程组的兄弟结点链表 */
36     struct list_head siblings;
37     /* 进程组的儿子结点链表 */
38     struct list_head children;
39
40 #ifdef CONFIG_SCHED_AUTOGROUP
41     struct autogroup *autogroup;
42 #endif
43
44     struct cfs_bandwidth cfs_bandwidth;
45 };

在struct task_group结构中,最重要的成员为 struct sched_entity ** se 和 struct cfs_rq ** cfs_rq。在图1 中,root_task_group与task_group1都只有一个,它们在初始化时会根据CPU个数为se和cfs_rq分配空间,即在task_group1和root_task_group中会为每个CPU分配一个se和cfs_rq,同理用于实时进程的 struct sched_rt_entity ** rt_se 和 struct rt_rq ** rt_rq也是一样。为什么这样呢,原因就是在多核多CPU的情况下,同一进程组的进程有可能在不同CPU上同时运行,所以每个进程组都必须对每个CPU分配它的调度实体(struct sched_entity 和 struct sched_rt_entity)和运行队列(struct cfs_rq 和 struct rt_rq)。

调度实体(struct sched_entity)

在组调度中,也涉及到调度实体这个概念,它的结构为struct sched_entity(简称se),就是图1 红黑树中的se。其实际上就代表了一个调度对象,可以为一个进程,也可以为一个进程组。对于根的红黑树而言,一个进程组就相当于一个调度实体,一个进程也相当于一个调度实体。我们可以先看看其结构,如下:

 1 /* 一个调度实体(红黑树的一个结点),其包含一组或一个指定的进程,包含一个自己的运行队列,一个父亲指针,一个指向需要调度的运行队列指针 */
 2 struct sched_entity {
 3     /* 权重,在数组prio_to_weight[]包含优先级转权重的数值 */
 4     struct load_weight    load;        /* for load-balancing */
 5     /* 实体在红黑树对应的结点信息 */
 6     struct rb_node        run_node;
 7     /* 实体所在的进程组 */
 8     struct list_head    group_node;
 9     /* 实体是否处于红黑树运行队列中 */
10     unsigned int        on_rq;
11
12     /* 开始运行时间 */
13     u64            exec_start;
14     /* 总运行时间 */
15     u64            sum_exec_runtime;
16     /* 虚拟运行时间,在时间中断或者任务状态发生改变时会更新
17      * 其会不停增长,增长速度与load权重成反比,load越高,增长速度越慢,就越可能处于红黑树最左边被调度
18      * 每次时钟中断都会修改其值
19      * 具体见calc_delta_fair()函数
20      */
21     u64            vruntime;
22     /* 进程在切换进CPU时的sum_exec_runtime值 */
23     u64            prev_sum_exec_runtime;
24
25     /* 此调度实体中进程移到其他CPU组的数量 */
26     u64            nr_migrations;
27
28 #ifdef CONFIG_SCHEDSTATS
29     /* 用于统计一些数据 */
30     struct sched_statistics statistics;
31 #endif
32
33 #ifdef CONFIG_FAIR_GROUP_SCHED
34     /* 代表此进程组的深度,每个进程组都比其parent调度组深度大1 */
35     int            depth;
36     /* 父亲调度实体指针,如果是进程则指向其运行队列的调度实体,如果是进程组则指向其上一个进程组的调度实体
37      * 在 set_task_rq 函数中设置
38      */
39     struct sched_entity    *parent;
40     /* 实体所处红黑树运行队列 */
41     struct cfs_rq        *cfs_rq;
42     /* 实体的红黑树运行队列,如果为NULL表明其是一个进程,若非NULL表明其是调度组 */
43     struct cfs_rq        *my_q;
44 #endif
45
46 #ifdef CONFIG_SMP
47     /* Per-entity load-tracking */
48     struct sched_avg    avg;
49 #endif
50 };

实际上,红黑树是根据 struct rb_node 建立起关系的,不过 struct rb_node 与 struct sched_entity 是一一对应关系,也可以简单看为一个红黑树结点就是一个调度实体。可以看出,在 struct sched_entity 结构中,包含了一个进程(或进程组)调度的全部数据,其被包含在 struct task_struct 结构中的se中,如下:

 1 struct task_struct {
 2     ........
 3     /* 表示是否在运行队列 */
 4     int on_rq;
 5
 6     /* 进程优先级
 7      * prio: 动态优先级,范围为100~139,与静态优先级和补偿(bonus)有关
 8      * static_prio: 静态优先级,static_prio = 100 + nice + 20 (nice值为-20~19,所以static_prio值为100~139)
 9      * normal_prio: 没有受优先级继承影响的常规优先级,具体见normal_prio函数,跟属于什么类型的进程有关
10      */
11     int prio, static_prio, normal_prio;
12     /* 实时进程优先级 */
13     unsigned int rt_priority;
14     /* 调度类,调度处理函数类 */
15     const struct sched_class *sched_class;
16     /* 调度实体(红黑树的一个结点) */
17     struct sched_entity se;
18     /* 调度实体(实时调度使用) */
19     struct sched_rt_entity rt;
20 #ifdef CONFIG_CGROUP_SCHED
21     /* 指向其所在进程组 */
22     struct task_group *sched_task_group;
23 #endif
24     ........
25 }

在 struct sched_entity 结构中,值得我们注意的成员是:

  • load:权重,通过优先级转换而成,是vruntime计算的关键。
  • on_rq:表明是否处于CFS红黑树运行队列中,需要明确一个观点就是,CFS运行队列里面包含有一个红黑树,但这个红黑树并不是CFS运行队列的全部,因为红黑树仅仅是用于选择出下一个调度程序的算法。很简单的一个例子,普通程序运行时,其并不在红黑树中,但是还是处于CFS运行队列中,其on_rq为真。只有准备退出、即将睡眠等待和转为实时进程的进程其CFS运行队列的on_rq为假。
  • vruntime:虚拟运行时间,调度的关键,红黑树就是以此作为排序的标准,优先级越高的进程其vruntime增长的越慢,就越有可能处于红黑树的最左结点,调度器每次都选择最左边的结点为下一个调度进程。其值为单调递增,在每个调度器的时钟中断时都会累加,其计算公式:一次调度间隔的虚拟运行时间 = 实际运行时间 * (NICE_0_LOAD / 权重)。单纯的说就是进程们都在比谁的vruntime最小,最小的将被调度。
  • cfs_rq:此调度实体所处于的CFS运行队列。
  • my_q:如果此调度实体代表的是一个进程组,那么此调度实体就包含有一个自己的CFS运行队列,其CFS运行队列中存放的是此进程组中的进程,这些进程就不会在其他CFS运行队列的红黑树中被包含(包括顶层红黑树也不会包含他们,他们只属于这个进程组的红黑树)。

对于怎么理解一个进程组有它自己的CFS运行队列,其实很好理解,比如在根CFS运行队列的红黑树上有一个进程A一个进程组B,各占50%的CPU,对于根的红黑树而言,他们就是两个调度实体。调度器调度的不是进程A就是进程组B,而如果调度到进程组B,进程组B自己选择一个程序交给CPU运行就可以了,而进程组B怎么选择一个程序给CPU,就是通过自己的CFS运行队列的红黑树选择,如果进程组B还有个子进程组C,原理都一样,就是一个层次结构。

而在 struct task_struct 结构中,我们注意到有个调度类,里面包含的是调度处理函数,它具体如下:

 1 struct sched_class {
 2     /* 下一优先级的调度类
 3      * 调度类优先级顺序: stop_sched_class -> dl_sched_class -> rt_sched_class -> fair_sched_class -> idle_sched_class
 4      */
 5     const struct sched_class *next;
 6
 7     /* 将进程加入到运行队列中,即将调度实体(进程)放入红黑树中,并对 nr_running 变量加1 */
 8     void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
 9     /* 从运行队列中删除进程,并对 nr_running 变量中减1 */
10     void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
11     /* 放弃CPU,在 compat_yield sysctl 关闭的情况下,该函数实际上执行先出队后入队;在这种情况下,它将调度实体放在红黑树的最右端 */
12     void (*yield_task) (struct rq *rq);
13     bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
14
15     /* 检查当前进程是否可被新进程抢占 */
16     void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
17
18     /*
19      * It is the responsibility of the pick_next_task() method that will
20      * return the next task to call put_prev_task() on the @prev task or
21      * something equivalent.
22      *
23      * May return RETRY_TASK when it finds a higher prio class has runnable
24      * tasks.
25      */
26     /* 选择下一个应该要运行的进程运行 */
27     struct task_struct * (*pick_next_task) (struct rq *rq,
28                         struct task_struct *prev);
29     /* 将进程放回运行队列 */
30     void (*put_prev_task) (struct rq *rq, struct task_struct *p);
31
32 #ifdef CONFIG_SMP
33     /* 为进程选择一个合适的CPU */
34     int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
35     /* 迁移任务到另一个CPU */
36     void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
37     /* 用于上下文切换后 */
38     void (*post_schedule) (struct rq *this_rq);
39     /* 用于进程唤醒 */
40     void (*task_waking) (struct task_struct *task);
41     void (*task_woken) (struct rq *this_rq, struct task_struct *task);
42     /* 修改进程的CPU亲和力(affinity) */
43     void (*set_cpus_allowed)(struct task_struct *p,
44                  const struct cpumask *newmask);
45     /* 启动运行队列 */
46     void (*rq_online)(struct rq *rq);
47     /* 禁止运行队列 */
48     void (*rq_offline)(struct rq *rq);
49 #endif
50     /* 当进程改变它的调度类或进程组时被调用 */
51     void (*set_curr_task) (struct rq *rq);
52     /* 该函数通常调用自 time tick 函数;它可能引起进程切换。这将驱动运行时(running)抢占 */
53     void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
54     /* 在进程创建时调用,不同调度策略的进程初始化不一样 */
55     void (*task_fork) (struct task_struct *p);
56     /* 在进程退出时会使用 */
57     void (*task_dead) (struct task_struct *p);
58
59     /* 用于进程切换 */
60     void (*switched_from) (struct rq *this_rq, struct task_struct *task);
61     void (*switched_to) (struct rq *this_rq, struct task_struct *task);
62     /* 改变优先级 */
63     void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
64              int oldprio);
65
66     unsigned int (*get_rr_interval) (struct rq *rq,
67                      struct task_struct *task);
68
69     void (*update_curr) (struct rq *rq);
70
71 #ifdef CONFIG_FAIR_GROUP_SCHED
72     void (*task_move_group) (struct task_struct *p, int on_rq);
73 #endif
74 };

这个调度类具体有什么用呢,实际上在内核中不同的调度算法它们的操作都不相同,为了方便修改、替换调度算法,使用了调度类,每个调度算法只需要实现自己的调度类就可以了,CFS算法有它的调度类,SCHED_FIFO也有它自己的调度类,当一个进程创建时,用什么调度算法就将其 task_struct->sched_class 指向其相应的调度类,调度器每次调度处理时,就通过当前进程的调度类函数进程操作,大大提高了可移植性和易修改性。

CFS运行队列(struct cfs_rq)

我们现在知道,在系统中至少有一个CFS运行队列,其就是根CFS运行队列,而其他的进程组和进程都包含在此运行队列中,不同的是进程组又有它自己的CFS运行队列,其运行队列中包含的是此进程组中的所有进程。当调度器从根CFS运行队列中选择了一个进程组进行调度时,进程组会从自己的CFS运行队列中选择一个调度实体进行调度(这个调度实体可能为进程,也可能又是一个子进程组),就这样一直深入,直到最后选出一个进程进行运行为止。
    对于 struct cfs_rq 结构没有什么好说明的,只要确定其代表着一个CFS运行队列,并且包含有一个红黑树进行选择调度进程即可。

 1 /* CFS调度的运行队列,每个CPU的rq会包含一个cfs_rq,而每个组调度的sched_entity也会有自己的一个cfs_rq队列 */
 2 struct cfs_rq {
 3     /* CFS运行队列中所有进程的总负载 */
 4     struct load_weight load;
 5     /*
 6      * nr_running: cfs_rq中调度实体数量
 7      * h_nr_running: 只对进程组有效,其下所有进程组中cfs_rq的nr_running之和
 8      */
 9     unsigned int nr_running, h_nr_running;
10
11     u64 exec_clock;
12     /* 当前CFS队列上最小运行时间,单调递增
13      * 两种情况下更新该值:
14      * 1、更新当前运行任务的累计运行时间时
15      * 2、当任务从队列删除去,如任务睡眠或退出,这时候会查看剩下的任务的vruntime是否大于min_vruntime,如果是则更新该值。
16      */
17     u64 min_vruntime;
18 #ifndef CONFIG_64BIT
19     u64 min_vruntime_copy;
20 #endif
21     /* 该红黑树的root */
22     struct rb_root tasks_timeline;
23     /* 下一个调度结点(红黑树最左边结点,最左边结点就是下个调度实体) */
24     struct rb_node *rb_leftmost;
25
26     /*
27      * ‘curr‘ points to currently running entity on this cfs_rq.
28      * It is set to NULL otherwise (i.e when none are currently running).
29      */
30     /*
31      * curr: 当前正在运行的sched_entity(对于组虽然它不会在cpu上运行,但是当它的下层有一个task在cpu上运行,那么它所在的cfs_rq就把它当做是该cfs_rq上当前正在运行的sched_entity)
32      * next: 表示有些进程急需运行,即使不遵从CFS调度也必须运行它,调度时会检查是否next需要调度,有就调度next
33      *
34      * skip: 略过进程(不会选择skip指定的进程调度)
35      */
36     struct sched_entity *curr, *next, *last, *skip;
37
38 #ifdef    CONFIG_SCHED_DEBUG
39     unsigned int nr_spread_over;
40 #endif
41
42 #ifdef CONFIG_SMP
43     /*
44      * CFS Load tracking
45      * Under CFS, load is tracked on a per-entity basis and aggregated up.
46      * This allows for the description of both thread and group usage (in
47      * the FAIR_GROUP_SCHED case).
48      */
49     unsigned long runnable_load_avg, blocked_load_avg;
50     atomic64_t decay_counter;
51     u64 last_decay;
52     atomic_long_t removed_load;
53
54 #ifdef CONFIG_FAIR_GROUP_SCHED
55     /* Required to track per-cpu representation of a task_group */
56     u32 tg_runnable_contrib;
57     unsigned long tg_load_contrib;
58
59     /*
60      * h_load = weight * f(tg)
61      *
62      * Where f(tg) is the recursive weight fraction assigned to
63      * this group.
64      */
65     unsigned long h_load;
66     u64 last_h_load_update;
67     struct sched_entity *h_load_next;
68 #endif /* CONFIG_FAIR_GROUP_SCHED */
69 #endif /* CONFIG_SMP */
70
71 #ifdef CONFIG_FAIR_GROUP_SCHED
72     /* 所属于的CPU rq */
73     struct rq *rq;    /* cpu runqueue to which this cfs_rq is attached */
74
75     /*
76      * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
77      * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
78      * (like users, containers etc.)
79      *
80      * leaf_cfs_rq_list ties together list of leaf cfs_rq‘s in a cpu. This
81      * list is used during load balance.
82      */
83     int on_list;
84     struct list_head leaf_cfs_rq_list;
85     /* 拥有该CFS运行队列的进程组 */
86     struct task_group *tg;    /* group that "owns" this runqueue */
87
88 #ifdef CONFIG_CFS_BANDWIDTH
89     int runtime_enabled;
90     u64 runtime_expires;
91     s64 runtime_remaining;
92
93     u64 throttled_clock, throttled_clock_task;
94     u64 throttled_clock_task_time;
95     int throttled, throttle_count;
96     struct list_head throttled_list;
97 #endif /* CONFIG_CFS_BANDWIDTH */
98 #endif /* CONFIG_FAIR_GROUP_SCHED */
99 };
  • load:其保存的是进程组中所有进程的权值总和,需要注意子进程计算vruntime时需要用到进程组的load。

CPU运行队列(struct rq)

每个CPU都有自己的 struct rq 结构,其用于描述在此CPU上所运行的所有进程,其包括一个实时进程队列和一个根CFS运行队列,在调度时,调度器首先会先去实时进程队列找是否有实时进程需要运行,如果没有才会去CFS运行队列找是否有进行需要运行,这就是为什么常说的实时进程优先级比普通进程高,不仅仅体现在prio优先级上,还体现在调度器的设计上,至于dl运行队列,我暂时还不知道有什么用处,其优先级比实时进程还高,但是创建进程时如果创建的是dl进程创建会错误(具体见sys_fork)。

总结

关键的数据结构也介绍得差不多了,之后的章节将会从代码上为大家详细讲解内核调度器是怎么实现的。

时间: 2024-10-11 09:52:09

linux调度器源码研究 - 概述(一)的相关文章

linux调度器源码分析 - 运行(四)

本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 引言 之前的文章已经将调度器的数据结构.初始化.加入进程都进行了分析,这篇文章将主要说明调度器是如何在程序稳定运行的情况下进行进程调度的. 系统定时器 因为我们主要讲解的是调度器,而会涉及到一些系统定时器的知识,这里我们简单讲解一下内核中定时器是如何组织,又是如何通过通过定时器实现了调度器的间隔调度.首先我们先看一下内核定时器的框架 在内核中,会使用strut clock_event_device结构描述硬件

linux调度器源码分析 - 初始化(二)

本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 引言 上期文章linux调度器源码分析 - 概述(一)已经把调度器相关的数据结构介绍了一遍,本篇着重通过代码说明调度器在系统启动初始化阶段是如何初始化和工作的.通过上期文章我们知道,在多核CPU和SMP系统中,每个CPU(多核COU中的每个核)都有自己的struct rq队列,而rq队列中又有着自己的struct cfs_rq和struct rt_rq.在初始化时就是对这三个结构进行初始化. init_tas

Linux 调度器发展简述

引言 进程调度是操作系统的核心功能.调度器只是是调度过程中的一部分,进程调度是非常复杂的过程,需要多个系统协同工作完成.本文所关注的仅为调度器,它的主要工作是在所有 RUNNING 进程中选择最合适的一个.作为一个通用操作系统,Linux 调度器将进程分为三类: 交互式进程 此类进程有大量的人机交互,因此进程不断地处于睡眠状态,等待用户输入.典型的应用比如编辑器 vi.此类进程对系统响应时间要求比较高,否则用户会感觉系统反应迟缓. 批处理进程 此类进程不需要人机交互,在后台运行,需要占用大量的系

Python解析器源码加密系列之(二):一次使用标准c的FILE*访问内存块的尝试

摘要:由于近期打算修改Python解释器以实现pyc文件的加密/解密,出于保密的要求,解密之后的数据只能放在内存中,不能写入到文件中.但是后续的解析pyc文件的代码又只能接受FILE*作为入参,所以就提出了一种把通过FILE*来访问内存的需求,下文是针对这个需求的几个方面的尝试及其结论. 以下尝试的前提是:Win7 + VS2010. 在vc中,FILE其实就是_iobuf,定义如下: struct _iobuf { char *_ptr; //文件输入的下一个位置 int _cnt; //当前

LIVE555源码研究之四:MediaServer (一)

从本篇文章开始我们将从简单服务器程序作为突破点,深入研究LIVE555源码. 从前面的文章我们知道,任何一个基于LIVE555库实现的程序都需要实现自己的环境类和调度类.这里,服务器程序就使用了BasicEnvironment库中实现的简单环境类和简单调度类.说它简单,是因为该环境类仅仅实现了将错误信息输出到控制台.而调度类仅仅通过select模型实现socket的读写. 下面我们来看下简单环境类BasicEnvironment和简单调度类BasicTaskScheduler是如何实现的. 打开

Linux学习之源码2:start_kernel流程

一.X86的流程可以参考http://www.kerneltravel.net/kernel-book/第十三章%20启动系统/13.5.htm 二.arm的流程,在http://www.cnblogs.com/gangsaleisi/archive/2013/01/09/2851734.html基础上进行分析. 并且是在3.9.7版本上进行分析的,差别不是太大. 1.lockdep_init():lockdep哈希表初始化,lockdep是linux内核的一个调试模块,用来检查内核互斥机制尤其

基于linux操作系统深入源码进程模型分析

1.进程 1.1进程的概念 计算机上所有可运行的软件,通常也包括操作系统,被组织成若干顺序进程(sequential process),简称进程(process). 一个进程就是一个正在执行程序的实例,包括程序设计器.寄存器和变量的当前值.一个进程是某种类型的一种活动,它有程序.输入.输出以及状态.单个处理器可以被若干进程共享,它使用某种调度算法决定何时停止一个进程的工作,并转而为了另一个进程服务功能. 1.2进程的特征 动态性:进程的实质是程序在多道程序系统中的一次执行过程,进程是动态产生,动

C++、VC++、MFC网页自动注册、登陆、发帖、留言,QQ注册、QQ申请器源码、注册邮箱源码、自动发帖源码

C++.VC++.MFC网页自动注册.登陆.发帖.留言,QQ注册.QQ申请器源码.注册邮箱源码.自动发帖源码 参考资料: 自动登录yahoo邮箱http://blog.csdn.net/suisuibianbian/archive/2005/12/12/550260.aspx VC采集网页所有表单域http://blog.csdn.net/fjssharpsword/archive/2010/12/17/6081689.aspx 说说这类软件最常见的使用方式吧. 也许你经常看到有人发布了以下这类

Linux 下MySQL源码安装完整版

在Linux中安装MySQL,通常为RPM与源码方式安装.对于生产环境而言,由于需要自定义诸如安装路径.数据文件位置.字符集以及支持的存储引擎等多以源码方式来进行安装.之前有写过一篇关于源码安装的文章,Linux下基于源码方式安装MySQL 5.6,但不是很完整,因此该文可以作为其补充.以下为具体安装步骤,供大家参考. 1.安装前的有关描述必备的包和工具  gcc/g++ :MySQL 5.6开始,需要使用g++进行编译.  cmake  :MySQL 5.5开始,使用cmake进行工程管理,c