例子:
- 求未知电影属于什么类型:
算法介绍:
步骤:
- 为了判断未知实例的类别,以所有已知类别的实例作为参照
- 选择参数K
- 计算未知实例与所有已知实例的距离
- 选择最近K个已知实例
- 根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别
细节:
- 关于K的选择
- 关于距离的衡量方法:
其他距离衡量:余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance)
算法优点:
- 简单。
- 易于理解。
- 容易实现。
- 通过对K的选择可具备丢噪音数据的健壮性。
算法缺点:
- 需要大量空间储存所有已知实例。
- 算法复杂度高(需要比较所有已知实例与要分类的实例)。
- 当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例实际并木接近目标样本。
时间: 2024-11-08 11:24:29