最邻近规则分类KNN算法

例子:

  • 求未知电影属于什么类型:

算法介绍:

步骤:

  •    为了判断未知实例的类别,以所有已知类别的实例作为参照
  •      选择参数K
  •      计算未知实例与所有已知实例的距离
  •      选择最近K个已知实例
  •      根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别

细节:

  • 关于K的选择
  • 关于距离的衡量方法:

其他距离衡量:余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance)

算法优点:

  •   简单。
  •       易于理解。
  •       容易实现。
  •       通过对K的选择可具备丢噪音数据的健壮性。

算法缺点:

  •   需要大量空间储存所有已知实例。
  •       算法复杂度高(需要比较所有已知实例与要分类的实例)。
  •       当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例实际并木接近目标样本。

时间: 2024-11-08 11:24:29

最邻近规则分类KNN算法的相关文章

kNN(K-Nearest Neighbor)最邻近规则分类

KNN最邻近规则,主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近: K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或

kNN(K-Nearest Neighbor)最邻近规则分类(转)

KNN最邻近规则,主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近: K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或

最邻近规则分类

1. 综述 1.1 Cover和Hart在1968年提出了最初的邻近算法 1.2 分类(classification)算法 1.3 输入基于实例的学习(instance-based learning), 懒惰学习(lazy learning) 2. 例子: 未知电影属于什么类型? 3. 算法详述 3.1 步骤: 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选择最近K个已知实例 根据少数服从多数的投票法则(majority-voting),让

最邻近规则分类(K-Nearest Neighbor)KNN算法

 自写代码: 1 # Author Chenglong Qian 2 3 from numpy import * #科学计算模块 4 import operator #运算符模块 5 6 def createDaraSet(): 7 group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])#创建4行2列的数组 8 labels=['A',"A",'B','B']#标签列表 9 return group,labels 10 11 group,lab

4.2 最邻近规则分类(K-Nearest Neighbor)KNN算法应用

1 数据集介绍: 虹膜 150个实例 萼片长度,萼片宽度,花瓣长度,花瓣宽度 (sepal length, sepal width, petal length and petal width) 类别: Iris setosa, Iris versicolor, Iris virginica. 2. 利用Python的机器学习库sklearn: SkLearnExample.py from sklearn import neighbors from sklearn import datasets

KNN算法在保险业精准营销中的应用

版权所有,可以转载,禁止修改.转载请注明作者以及原文链接. 一.KNN算法概述 KNN是Machine Learning领域一个简单又实用的算法,与之前讨论过的算法主要存在两点不同: 它是一种非参方法.即不必像线性回归.逻辑回归等算法一样有固定格式的模型,也不需要去拟合参数. 它既可用于分类,又可应用于回归. KNN的基本思想有点类似“物以类聚,人以群分”,打个通俗的比方就是“如果你要了解一个人,可以从他最亲近的几个朋友去推测他是什么样的人”. 在分类领域,对于一个未知点,选取K个距离(可以是欧

数据挖掘之分类算法---knn算法(有matlab样例)

knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法. 注意,不是聚类算法.所以这样的分类算法必定包含了训练过程. 然而和一般性的分类算法不同,knn算法是一种懒惰算法.它并不是 像其它的分类算法先通过训练建立分类模型.,而是一种被动的分类 过程.它是边測试边训练建立分类模型. 算法的一般描写叙述步骤例如以下: 1.首先计算每一个測试样本点到其它每一个点的距离. 这个距离能够是欧氏距离,余弦距离等. 2. 然后取出距离小于设定的距离阈值的点. 这些点即为依

数据挖掘之分类算法---knn算法(有matlab例子)

knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法. 注意,不是聚类算法.所以这种分类算法必然包括了训练过程. 然而和一般性的分类算法不同,knn算法是一种懒惰算法.它并非 像其他的分类算法先通过训练建立分类模型.,而是一种被动的分类 过程.它是边测试边训练建立分类模型. 算法的一般描述过程如下: 1.首先计算每个测试样本点到其他每个点的距离. 这个距离可以是欧氏距离,余弦距离等. 2. 然后取出距离小于设定的距离阈值的点. 这些点即为根据阈值环绕在测试

Opencv学习之路—Opencv下基于HOG特征的KNN算法分类训练

在计算机视觉研究当中,HOG算法和LBP算法算是基础算法,但是却十分重要.后期很多图像特征提取的算法都是基于HOG和LBP,所以了解和掌握HOG,是学习计算机视觉的前提和基础. HOG算法的原理很多资料都可以查到,简单来说,就是将图像分成一个cell,通过对每个cell的像素进行梯度处理,进而根据梯度方向和梯度幅度来得到cell的图像特征.随后,将每个cell的图像特征连接起来,得到一个BLock的特征,进而得到一张图片的特征.Opencv当中自带HOG算法,可以直接调用,进行图像的特征提取.但