Ignatius‘s puzzle
Problem Description
Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer
x ,65|f(x)if
no exists that a,then print "no".
Input
The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
Output
The output contains a string "no",if you can‘t find a,or you should output a line contains the a.More details in the Sample Output.
Sample Input
11 100 9999
Sample Output
22 no 43
Author
eddy
Recommend
We have carefully selected several similar problems for you: 1071 1014 1052 1097 1082
题目大意:
给定一个k,找到最小的a 使得 f(x)=5*x^13+13*x^5+k*a*x ,f(x)%65永远等于0
解题思路:
因为 f(x+1)=5*(x+1)^13+13*(x+1)^5+k*a*x,
所以 f(x+1)=f (x) + 5*( (13 1 ) x^12 ...... .....+(13 13) x^0 )+ 13*( (5 1 )x^4+...........+ ( 5 5 )x^0 )+k*a
除了5*(13 13) x^0 、13*( 5 5 )x^0 和k*a三项以外,其余各项都能被65整除.
那么也只要求出18+k*a能被65整除就可以了。
18+k*a=65*b
ax+by = c的方程有解的一个充要条件是:c%gcd(a, b) == 0
解题代码:“
#include <iostream> #include <cstdio> using namespace std; int gcd(int a,int b){ return b>0?gcd(b,a%b):a; } int main(){ int k; while(scanf("%d",&k)!=EOF){ if(18%gcd(k,65)==0){ for(int a=0;;a++){ if( (18+k*a)%65==0 ){ printf("%d\n",a); break; } } } else printf("no\n"); } return 0; }
HDU 1098 Ignatius's puzzle(数论-其它)