Project Euler:Problem 71 Ordered fractions

Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1, it is called a reduced proper fraction.

If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size, we get:

1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

It can be seen that 2/5 is the fraction immediately to the left of 3/7.

By listing the set of reduced proper fractions for d ≤ 1,000,000 in ascending order of size, find the numerator of the fraction immediately to the left of 3/7.

p/q < 3/7  ==>  7p<3q   ==> 7p<=3q -1  ==> p=floor((3q-1)/7)

将当前最接近3/7的分数保存为r/s   如果 r/s <p/q  即 r*q < p*s   则把p,q分别赋值给r,s

import math
a=3
b=7
r=0
s=1
for q in range(2,1000000):
    p=math.floor((a*q-1)/b)
    if r*q < s*p:
        r=p
        s=q
print('r = ',r)
print('s = ',s)

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-11 06:52:31

Project Euler:Problem 71 Ordered fractions的相关文章

Project Euler:Problem 72 Counting fractions

Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1, it is called a reduced proper fraction. If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size, we get: 1/8, 1/7, 1/6, 1/5, 1/4, 2/7,

Project Euler:Problem 46 Goldbach&#39;s other conjecture

It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square. 9 = 7 + 2×12 15 = 7 + 2×22 21 = 3 + 2×32 25 = 7 + 2×32 27 = 19 + 2×22 33 = 31 + 2×12 It turns out that the conjecture was f

Project Euler:Problem 40 Champernowne&#39;s constant

An irrational decimal fraction is created by concatenating the positive integers: 0.123456789101112131415161718192021... It can be seen that the 12th digit of the fractional part is 1. If dn represents the nth digit of the fractional part, find the v

Project Euler:Problem 33 Digit cancelling fractions

The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that49/98 = 4/8, which is correct, is obtained by cancelling the 9s. We shall consider fractions like, 30/50 = 3/5, to be

Project Euler:Problem 18 Maximum path sum I

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom of the triangle below

Project Euler:Problem 90 Cube digit pairs

Each of the six faces on a cube has a different digit (0 to 9) written on it; the same is done to a second cube. By placing the two cubes side-by-side in different positions we can form a variety of 2-digit numbers. For example, the square number 64

Project Euler:Problem 89 Roman numerals

For a number written in Roman numerals to be considered valid there are basic rules which must be followed. Even though the rules allow some numbers to be expressed in more than one way there is always a "best" way of writing a particular number

Project Euler:Problem 67 Maximum path sum II

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom in triangle.txt (righ

Project Euler:Problem 69 Totient maximum

Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number of numbers less than n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9