Linux进程状态(ps stat)之R、S、D、T、Z、X 转:http://blog.csdn.net/huzia/article/details/18946491

Linux是一个多用户,多任务的系统,可以同时运行多个用户的多个程序,就必然会产生很多的进程,而每个进程会有不同的状态。

Linux进程状态:R (TASK_RUNNING),可执行状态。

只有在该状态的进程才可能在CPU上运行。而同一时刻可能有多个进程处于可执行状态,这些进程的task_struct结构(进程控制块)被放入对应CPU的可执行队列中(一个进程最多只能出现在一个CPU的可执行队列中)。进程调度器的任务就是从各个CPU的可执行队列中分别选择一个进程在该CPU上运行。

很多操作系统教科书将正在CPU上执行的进程定义为RUNNING状态、而将可执行但是尚未被调度执行的进程定义为READY状态,这两种状态在linux下统一为 TASK_RUNNING状态。

Linux进程状态:S (TASK_INTERRUPTIBLE),可中断的睡眠状态。

处于这个状态的进程因为等待某某事件的发生(比如等待socket连接、等待信号量),而被挂起。这些进程的task_struct结构被放入对应事件的等待队列中。当这些事件发生时(由外部中断触发、或由其他进程触发),对应的等待队列中的一个或多个进程将被唤醒。

通过ps命令我们会看到,一般情况下,进程列表中的绝大多数进程都处于TASK_INTERRUPTIBLE状态(除非机器的负载很高)。毕竟CPU就这么一两个,进程动辄几十上百个,如果不是绝大多数进程都在睡眠,CPU又怎么响应得过来。

Linux进程状态:D (TASK_UNINTERRUPTIBLE),不可中断的睡眠状态。

与TASK_INTERRUPTIBLE状态类似,进程处于睡眠状态,但是此刻进程是不可中断的。不可中断,指的并不是CPU不响应外部硬件的中断,而是指进程不响应异步信号。
绝大多数情况下,进程处在睡眠状态时,总是应该能够响应异步信号的。否则你将惊奇的发现,kill -9竟然杀不死一个正在睡眠的进程了!于是我们也很好理解,为什么ps命令看到的进程几乎不会出现TASK_UNINTERRUPTIBLE状态,而总是TASK_INTERRUPTIBLE状态。

而TASK_UNINTERRUPTIBLE状态存在的意义就在于,内核的某些处理流程是不能被打断的。如果响应异步信号,程序的执行流程中就会被插入一段用于处理异步信号的流程(这个插入的流程可能只存在于内核态,也可能延伸到用户态),于是原有的流程就被中断了。(参见《linux内核异步中断浅析》)
在进程对某些硬件进行操作时(比如进程调用read系统调用对某个设备文件进行读操作,而read系统调用最终执行到对应设备驱动的代码,并与对应的物理设备进行交互),可能需要使用TASK_UNINTERRUPTIBLE状态对进程进行保护,以避免进程与设备交互的过程被打断,造成设备陷入不可控的状态。这种情况下的TASK_UNINTERRUPTIBLE状态总是非常短暂的,通过ps命令基本上不可能捕捉到。

linux系统中也存在容易捕捉的TASK_UNINTERRUPTIBLE状态。执行vfork系统调用后,父进程将进入TASK_UNINTERRUPTIBLE状态,直到子进程调用exit或exec(参见《神奇的vfork》)。
通过下面的代码就能得到处于TASK_UNINTERRUPTIBLE状态的进程:

  1. #include
  2. void main() {
  3. if (!vfork()) sleep(100);
  4. }

编译运行,然后ps一下:

  1. [email protected]:~/test$ ps -ax | grep a\.out
  2. 4371 pts/0    D+     0:00 ./a.out
  3. 4372 pts/0    S+     0:00 ./a.out
  4. 4374 pts/1    S+     0:00 grep a.out

然后我们可以试验一下TASK_UNINTERRUPTIBLE状态的威力。不管kill还是kill -9,这个TASK_UNINTERRUPTIBLE状态的父进程依然屹立不倒。

Linux进程状态:T (TASK_STOPPED or TASK_TRACED),暂停状态或跟踪状态。

向进程发送一个SIGSTOP信号,它就会因响应该信号而进入TASK_STOPPED状态(除非该进程本身处于TASK_UNINTERRUPTIBLE状态而不响应信号)。(SIGSTOP与SIGKILL信号一样,是非常强制的。不允许用户进程通过signal系列的系统调用重新设置对应的信号处理函数。)
向进程发送一个SIGCONT信号,可以让其从TASK_STOPPED状态恢复到TASK_RUNNING状态。

当进程正在被跟踪时,它处于TASK_TRACED这个特殊的状态。“正在被跟踪”指的是进程暂停下来,等待跟踪它的进程对它进行操作。比如在gdb中对被跟踪的进程下一个断点,进程在断点处停下来的时候就处于TASK_TRACED状态。而在其他时候,被跟踪的进程还是处于前面提到的那些状态。

对于进程本身来说,TASK_STOPPED和TASK_TRACED状态很类似,都是表示进程暂停下来。
而TASK_TRACED状态相当于在TASK_STOPPED之上多了一层保护,处于TASK_TRACED状态的进程不能响应SIGCONT信号而被唤醒。只能等到调试进程通过ptrace系统调用执行PTRACE_CONT、PTRACE_DETACH等操作(通过ptrace系统调用的参数指定操作),或调试进程退出,被调试的进程才能恢复TASK_RUNNING状态。

Linux进程状态:Z (TASK_DEAD – EXIT_ZOMBIE),退出状态,进程成为僵尸进程。

进程在退出的过程中,处于TASK_DEAD状态。

在这个退出过程中,进程占有的所有资源将被回收,除了task_struct结构(以及少数资源)以外。于是进程就只剩下task_struct这么个空壳,故称为僵尸。
之所以保留task_struct,是因为task_struct里面保存了进程的退出码、以及一些统计信息。而其父进程很可能会关心这些信息。比如在shell中,$?变量就保存了最后一个退出的前台进程的退出码,而这个退出码往往被作为if语句的判断条件。
当然,内核也可以将这些信息保存在别的地方,而将task_struct结构释放掉,以节省一些空间。但是使用task_struct结构更为方便,因为在内核中已经建立了从pid到task_struct查找关系,还有进程间的父子关系。释放掉task_struct,则需要建立一些新的数据结构,以便让父进程找到它的子进程的退出信息。

父进程可以通过wait系列的系统调用(如wait4、waitid)来等待某个或某些子进程的退出,并获取它的退出信息。然后wait系列的系统调用会顺便将子进程的尸体(task_struct)也释放掉。
子进程在退出的过程中,内核会给其父进程发送一个信号,通知父进程来“收尸”。这个信号默认是SIGCHLD,但是在通过clone系统调用创建子进程时,可以设置这个信号。

通过下面的代码能够制造一个EXIT_ZOMBIE状态的进程:

  1. #include
  2. void main() {
  3. if (fork())
  4. while(1) sleep(100);
  5. }

编译运行,然后ps一下:

  1. [email protected]:~/test$ ps -ax | grep a\.out
  2. 10410 pts/0    S+     0:00 ./a.out
  3. 10411 pts/0    Z+     0:00 [a.out]
  4. 10413 pts/1    S+     0:00 grep a.out

只要父进程不退出,这个僵尸状态的子进程就一直存在。那么如果父进程退出了呢,谁又来给子进程“收尸”?
当进程退出的时候,会将它的所有子进程都托管给别的进程(使之成为别的进程的子进程)。托管给谁呢?可能是退出进程所在进程组的下一个进程(如果存在的话),或者是1号进程。所以每个进程、每时每刻都有父进程存在。除非它是1号进程。

1号进程,pid为1的进程,又称init进程。
linux系统启动后,第一个被创建的用户态进程就是init进程。它有两项使命:
1、执行系统初始化脚本,创建一系列的进程(它们都是init进程的子孙);
2、在一个死循环中等待其子进程的退出事件,并调用waitid系统调用来完成“收尸”工作;
init进程不会被暂停、也不会被杀死(这是由内核来保证的)。它在等待子进程退出的过程中处于TASK_INTERRUPTIBLE状态,“收尸”过程中则处于TASK_RUNNING状态。

Linux进程状态:X (TASK_DEAD – EXIT_DEAD),退出状态,进程即将被销毁。

而进程在退出过程中也可能不会保留它的task_struct。比如这个进程是多线程程序中被detach过的进程(进程?线程?参见《linux线程浅析》)。或者父进程通过设置SIGCHLD信号的handler为SIG_IGN,显式的忽略了SIGCHLD信号。(这是posix的规定,尽管子进程的退出信号可以被设置为SIGCHLD以外的其他信号。)
此时,进程将被置于EXIT_DEAD退出状态,这意味着接下来的代码立即就会将该进程彻底释放。所以EXIT_DEAD状态是非常短暂的,几乎不可能通过ps命令捕捉到。

进程的初始状态

进程是通过fork系列的系统调用(fork、clone、vfork)来创建的,内核(或内核模块)也可以通过kernel_thread函数创建内核进程。这些创建子进程的函数本质上都完成了相同的功能——将调用进程复制一份,得到子进程。(可以通过选项参数来决定各种资源是共享、还是私有。)
那么既然调用进程处于TASK_RUNNING状态(否则,它若不是正在运行,又怎么进行调用?),则子进程默认也处于TASK_RUNNING状态。
另外,在系统调用调用clone和内核函数kernel_thread也接受CLONE_STOPPED选项,从而将子进程的初始状态置为 TASK_STOPPED。

进程状态变迁

进程自创建以后,状态可能发生一系列的变化,直到进程退出。而尽管进程状态有好几种,但是进程状态的变迁却只有两个方向——从TASK_RUNNING状态变为非TASK_RUNNING状态、或者从非TASK_RUNNING状态变为TASK_RUNNING状态。
也就是说,如果给一个TASK_INTERRUPTIBLE状态的进程发送SIGKILL信号,这个进程将先被唤醒(进入TASK_RUNNING状态),然后再响应SIGKILL信号而退出(变为TASK_DEAD状态)。并不会从TASK_INTERRUPTIBLE状态直接退出。

进程从非TASK_RUNNING状态变为TASK_RUNNING状态,是由别的进程(也可能是中断处理程序)执行唤醒操作来实现的。执行唤醒的进程设置被唤醒进程的状态为TASK_RUNNING,然后将其task_struct结构加入到某个CPU的可执行队列中。于是被唤醒的进程将有机会被调度执行。

而进程从TASK_RUNNING状态变为非TASK_RUNNING状态,则有两种途径:
1、响应信号而进入TASK_STOPED状态、或TASK_DEAD状态;
2、执行系统调用主动进入TASK_INTERRUPTIBLE状态(如nanosleep系统调用)、或TASK_DEAD状态(如exit系统调用);或由于执行系统调用需要的资源得不到满足,而进入TASK_INTERRUPTIBLE状态或TASK_UNINTERRUPTIBLE状态(如select系统调用)。
显然,这两种情况都只能发生在进程正在CPU上执行的情况下。

内核模块代码:
—————-killd.c—————-
#include #include #include //for_each_process
MODULE_LICENSE(“BSD”);
static int pid = -1;
module_param(pid, int, S_IRUGO);
static int killd_init(void)
{
struct task_struct * p;
printk(KERN_ALERT “killd: force D status process to death\n”);
printk(KERN_ALERT “killd: pid=%d\n”, pid);
//read_lock(&tasklist_lock);
for_each_process(p){
if(p->pid == pid){
printk(“killd: found\n”);
set_task_state(p, TASK_STOPPED);
printk(KERN_ALERT “killd: aha, dead already\n”);
return 0;
}
}
printk(“not found”);
//read_unlock(&tasklist_lock);
return 0;
}
static void killd_exit(void)
{
printk(KERN_ALERT “killd: bye\n”);
}
module_init(killd_init);
module_exit(killd_exit);
—–Makefile————
obj-m := killd.o
编译模块
make -C yourkerneltree M=`pwd` modules
插入模块的时候提供D状态的进程号,就可以将其转换为stopped状态,使用普通kill就可以杀死。
./insmod ./killd.ko pid=1234

Linux进程状态(ps stat)之R、S、D、T、Z、X 转:http://blog.csdn.net/huzia/article/details/18946491

时间: 2024-12-16 18:49:27

Linux进程状态(ps stat)之R、S、D、T、Z、X 转:http://blog.csdn.net/huzia/article/details/18946491的相关文章

Linux下socket编程(转载自http://blog.csdn.net/hguisu/article/details/7445768/)

Linux的SOCKET编程详解 1. 网络中进程之间如何通信 进 程通信的概念最初来源于单机系统.由于每个进程都在自己的地址范围内运行,为保证两个相互通信的进 程之间既互不干扰又协调一致工作,操作系统为进程通信提供了相应设施,如 UNIX BSD有:管道(pipe).命名管道(named pipe)软中断信号(signal) UNIX system V有:消息(message).共享存储区(shared memory)和信号量(semaphore)等. 他们都仅限于用在本机进程之间通信.网间进

linux下kill进程的N中方式(来源:http://blog.csdn.net/andy572633/article/details/7211546,请支持原创)

常规篇: 首先,用ps查看进程,方法如下: $ ps -ef ……smx       1822     1  0 11:38 ?        00:00:49 gnome-terminalsmx       1823  1822  0 11:38 ?        00:00:00 gnome-pty-helpersmx       1824  1822  0 11:38 pts/0    00:00:02 bashsmx       1827     1  4 11:38 ?       

linux下各种格式软件的安装(引用http://blog.csdn.net/zyz511919766/article/details/7574040)

首先介绍两个简单的方式 第一:sudo apt-get install packagename 命令 如果我们知道我们要安装的软件的确切的名称,那么我们可以简单的通过此条命令来获取和安装软件.apt-get是一条linux命令,适用于deb 包管理式的操作系统,如ubuntu,主要用于自动从互联网的软件仓库中搜索.安装.升级.卸载软件.apt-get命令一般需要root执行,所以一般 跟着sudo命令. 一些常用的apt命令参数(更具体的可参见相关的帮助文档): apt-cache search

Linux下/proc目录简介(文章来源于http://blog.csdn.net/zdwzzu2006/article/details/7747977)

1. /proc目录 Linux 内核提供了一种通过 /proc 文件系统,在运行时访问内核内部数据结构.改变内核设置的机制.proc文件系统是一个伪文件系统,它只存在内存当中,而不占用外存空间.它以文件系统的方式为访问系统内核数据的操作提供接口. 用户和应用程序可以通过 proc得到系统的信息,并可以改变内核的某些参数.由于系统的信息,如进程,是动态改变的,所以用户或应用程序读取proc文件时,proc文件系统是 动态从系统内核读出所需信息并提交的.下面列出的这些文件或子文件夹,并不是都是在你

linux上Kettle定时执行(转换的单步执行,job的单步执行,环境变量,kettle定时功能,效率问题等)转自(http://blog.csdn.net/feng19821209/article/details/5800960)

1,Kettle跨平台使用.    例如:在AIX下(AIX是IBM商用UNIX操作系统,此处在LINUX/UNIX同样适用),运行Kettle的相关步骤如下:    1)进入到Kettle部署的路径    2)执行 chmod *.sh,将所有shell文件添加可执行权限    3)在Kettle路径下,如果要执行transformation,就运行./pan.sh -file=?.ktr -debug=debug -log=log.log    其中.-file说明你要运行的transfor

linux音频alsa-uda134x驱动文档阅读之一转自http://blog.csdn.net/wantianpei/article/details/7817293

前言 目前,linux系统常用的音频驱动有两种形式:alsa oss alsa:现在是linux下音频驱动的主要形式,与简单的oss兼容.oss:过去的形式而我们板子上的uda1341用的就是alsa驱动.alsa概述:因为我们用的是板上系统,用的也是alsa 的一个soc子系统.所以我们直接讲解alsa soc子系统. ALSA SoC LayerALSA板上系统层============== The overall project goal of the ALSA System on Chi

Linux -磁盘管理 ip http://blog.csdn.net/xh16319/article/details/17272455

df 查看磁盘分区使用情况 - l 仅显示本地磁盘 - a 显示所有文件的磁盘使用情况 -h 以1024进制计算最合适的单位显示磁盘容量 -H  以1000进制显示磁盘容量(工业计算容量少的原因) -T 显示磁盘分区的类型 -t 显示指定类型文件系统的磁盘分区    #df -t ext4 -x 不显示指定类型文件系统的磁盘分区  #df -x ext4 du : 统计磁盘上文件的大小 b: 表示 以byte 为单位统计文件大小 K m: 以M为单位统计文件大小 h  : 按照1024进制,统计

linux设备模型详解 http://blog.csdn.net/linux_xiaomugua/article/details/6989386

http://blog.csdn.net/linux_xiaomugua/article/details/6989386 1. Sysfs文件系统 2. 内核对象机制关键数据结构 2.1 kobject内核对象 2.2 kset内核对象集合 2.3 subsystem内核对象子系统 3. 内核对象机制主要相关函数 3.1 kobject相关函数 3.2 kset相关函数 3.3 subsystem相关函数 4. 设备模型组件 4.1 devices 4.2 drivers 4.3 buses 4

linux initcall 介绍 (转自http://blog.csdn.net/fenzhikeji/article/details/6860143)

现在以module_init为例分析initcall在内核中的调用顺序 在头文件init.h中,有如下定义: #define module_init(x)     __initcall(x); 很明显,module_init()只是一个面具而已,揭开这个面具,下面藏着的是__initcall() __initcall()又是何方神圣呢?继续揭露真相: #define __initcall(fn) device_initcall(fn) 藏得真深,继续看: #define device_initc