Triangle LOVE
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3496 Accepted Submission(s): 1357
Problem Description
Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Input
The first line contains a single integer t (1 <= t <= 15), the number of test cases.
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
Output
For each case, output the case number as shown and then print “Yes”, if there is a “Triangle Love” among these N people, otherwise print “No”.
Take the sample output for more details.
Sample Input
2 5 00100 10000 01001 11101 11000 5 01111 00000 01000 01100 01110
Sample Output
Case #1: Yes Case #2: No
题目大意:
T组测试数据,每组数据一个n表示n个人,接下n*n的矩阵表示这些人之间的关系,输入一定满足若A不喜欢B则B一定喜欢A,且不会出现A和B相互喜欢的情况,问你这些人中是否存在三角恋。
解题思路:
拓扑排序后判断是否有环存在,有环必然存在是三角恋。
#include <cstdio> #include <cstring> #include <algorithm> #include <queue> #define maxn 2010 using namespace std; char map[maxn]; int indu[maxn]; int head[maxn], cnt; int n, k; struct node { int u, v, next; }; node edge[maxn * maxn]; void init(){ cnt = 0; memset(head, -1, sizeof(head)); memset(indu, 0, sizeof(indu)); } void add(int u, int v){ edge[cnt] = {u, v, head[u]}; head[u] = cnt++; } void input(){ scanf("%d", &n); for(int i = 0; i < n; ++i){ scanf("%s", map); for(int j = 0; j < n; ++j) if(map[j] == '1'){ add(i, j); indu[j]++; } } } void topsort(){ printf("Case #%d: ", ++k); queue<int >q; int ans = 0; for(int i = 0; i < n; ++i){ if(!indu[i]){ q.push(i); ans++; } } while(!q.empty()){ int u = q.front(); q.pop(); for(int i = head[u]; i != -1; i = edge[i].next){ int v = edge[i].v; indu[v]--; if(!indu[v]){ q.push(v); ans++; } } } if(n == ans) printf("No\n"); else printf("Yes\n"); } int main (){ int T; scanf("%d", &T); k = 0; while(T--){ init(); input(); topsort(); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。