Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15 最大字串和的升级对于数列A[1->n] dp[i]=dp[i-1]+a[i] dp[i-1]>0 || dp[i]=a[i] dp[i-1]<=0;现在将矩阵建立与最大字串和相关联的模型。矩阵压缩。滚动数组。 用s[k]表示第K列,第I行到第J行的和,把和看成一个数列中的一个AI即可。就转化成了最大字串和的问题。
1 #include"iostream" 2 #include"cstdio" 3 #include"cstring" 4 using namespace std; 5 const int ms=110; 6 int n,ans; 7 int matrix[ms][ms]; 8 int s[ms]; 9 int main() 10 { 11 int i,j,k,t; 12 while(scanf("%d",&n)!=EOF) 13 { 14 for(int i=1;i<=n;i++) 15 for(j=1;j<=n;j++) 16 scanf("%d",&matrix[i][j]); 17 ans=-0x7fffffff; 18 for(i=1;i<=n;i++) //从第I行出发的子矩阵 19 { 20 memset(s,0,sizeof(s)); 21 for(j=i;j<=n;j++) //到达第J行的子矩阵 22 { 23 t=0; 24 for(k=1;k<=n;k++)//包含第K列 最大矩阵 25 { 26 s[k]+=matrix[j][k]; 27 if(t<=0) 28 t=s[k]; 29 else 30 t+=s[k]; 31 if(t>ans) 32 ans=t; 33 34 } 35 } 36 } 37 printf("%d\n",ans); 38 } 39 return 0; 40 }