HDU 1527 取石子游戏 威佐夫博弈

题目来源:HDU 1527 取石子游戏

题意:中文

思路:威佐夫博弈 必败态为 (a,b ) ai + i = bi     ai = i*(1+sqrt(5.0)+1)/2   这题就求出i然后带人i和i+1判断是否成立

以下转自网上某总结

有公式ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,…,n 方括号表示取整函数)

其中出现了黄金分割数(1+√5)/2 = 1。618…,因此,由ak,bk组成的矩形近似为黄金矩形

由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2]

若a=[j(1+√5)/2],那么a = aj,bj = aj + j

若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1

若都不是,那么就不是奇异势

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
int main()
{
	int a, b;
	while(scanf("%d %d", &a, &b) != EOF)
	{
		if(a > b)
			swap(a, b);
		int k = (sqrt(5.0)-1)/2*(double)a;
		double t = (double)(sqrt(5.0)+1)/2;
		if((int)(t*k) == a && (int)(a+k) == b)
			puts("0");
		else if((int)(t*(k+1)) == a && (int)(a+1+k) == b)
			puts("0");
		else
			puts("1");
	}
	return 0;
}

HDU 1527 取石子游戏 威佐夫博弈,布布扣,bubuko.com

时间: 2024-10-25 10:54:28

HDU 1527 取石子游戏 威佐夫博弈的相关文章

洛谷P2252 取石子游戏(威佐夫博弈)

题目背景 无 题目描述 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,你先取,假设双方都采取最好的策略,问最后你是胜者还是败者. 输入输出格式 输入格式: 输入共一行. 第一行共两个数a, b,表示石子的初始情况. 输出格式: 输出共一行. 第一行为一个数字1.0或-1,如果最后你是胜利者则为1:若失败则为0:若结

取石子游戏 威佐夫博弈

取石子游戏 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25176   Accepted: 7961 Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者.

【POJ1067】取石子游戏 威佐夫博弈 这种题真的有意义么?

题意:default是汉语,自己看去. 题解: 威佐夫博弈这种恶心东西,"正常"解法是打表找规律. 但是我自认为找不出来这种规律,考试要是出了这种题-- 就随便输出一个来期望50分吧.. 要是每个测点都多组数据--那--就随机输出0/1期望10分吧. 要是多组数据的组数太多,那就按照表来乱搞. 小数据打表输出,大数据233. 威佐夫用的是黄金分割数.(网上查的) 下面是代码: #include <cmath> #include <cstdio> #include

POJ1067 取石子游戏 威佐夫博弈 博弈论

http://poj.org/problem?id=1067 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者. Input 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000

hdu1527取石子游戏 威佐夫博弈

//ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,...n 方括号表示取整函数) //即(bk-ak)==ak*(√5-1)/2 或 (bk-ak)+ 1==ak*(√5-1)/2即输 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std ; int main() { int n , m; while(~sc

hdu 1527 取石子游戏(威佐夫博奕模板题)

取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 3562    Accepted Submission(s): 1789 Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的

HDU 2177 取(2堆)石子游戏 威佐夫博弈

题目来源:HDU 2177 取(2堆)石子游戏 题意:中文 思路:判断是否是必败态就不说了 做过hdu1527就知道了 现在如果不是必败态 输出下一步所有的必败态 题目要求先输出两堆都取的方案 首先 a = b 直接2堆取完 a != b 因为bi = ai+i 现在知道ak 和 bk 那么 k = bk-ak 得到k 求出 aj 和 bj 如果ak-aj == bk-bj && ak-aj > 0(aj, bj)是必败态 输出aj bj 然后是只取一堆的情况 假设a不变 求出对应的

NYOJ 取石子(八) 威佐夫博弈

取石子(八) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者.如果你胜,你第1次怎样取子? 输入 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,

HDU 1527 取石子游戏(威佐夫博弈)

取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 8514    Accepted Submission(s): 4837 Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的