安装GPU版本的tensorflow过程总结

首先安装cuda,和cudnn

安装完了后再用pip去安装tensorflow的指令如下:$ sudo pip install https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0-cp27-none-linux_x86_64.whl

在spyder环境下,利用GPU模式下的tesorflow跑cnn时,出现

E tensorflow/stream_executor/cuda/cuda_dnn.cc:390]Loaded runtime CuDNN library: 5005 (compatibility version 5000) but source wascompiled with 5110 (compatibility version 5100).  If using a binary install, upgrade your CuDNNlibrary to match.  If building fromsources, make sure the library loaded at runtime matches a compatible versionspecified during compile configuration.

F tensorflow/core/kernels/conv_ops.cc:605]Check failed: stream->parent()->GetConvolveAlgorithms(&algorithms)

这个问题

原因:大概就是cudnn版本不符合,我的是5.0,官网要求的是5.1

更新cudnn首先要下载一个cudnn的压缩包,可以官网上下,也有网盘

链接:http://pan.baidu.com/s/1slPfR8x 密码:g4fv

然后将这个压缩包解压到主文件夹,会自动命名为cuda,cuda文件夹下有include和lib64两个文件夹

1、删除原来的cudnn系统路径下的一些文件

sudo rm -rf /usr/local/cuda/include/cudnn.h

sudo rm -rf /usr/local/cuda/lib64/libcudnn*   #这里*是通配符,libcudnn*指的是名字中带有libcudnn的所有文件

2、安装刚才解压的cudnn版本,在终端cd到刚解压的cuda文件夹,然后继续输入下面两个指令,这两个指令相当于把解压后的cuda文件夹下的一些文件拷到系统路径下面

sudo cp include/cudnn.h /usr/local/cuda/include/

sudo cp lib64/lib* /usr/local/cuda/lib64/       #这里*是通配符,lib*指的是名字中带有lib的所有文件

3、在系统路径下建立软链接(解压出来的lib64下面有3个so文件。分别是 libcudnn.so 和 libcudnn.so.5以及 libcudnn.so.5.1.3文件。 并且这3个点so文件大小都一样。其实都是软连接!libcudnn.so链接到libcudnn.so.5,而libcudnn.so.5.又链接到libcudnn.so.5.1.3。 真正的文件只有libcudnn.so.5.1.3)

cd /usr/local/cuda/lib64

sudo chmod +r libcudnn.so.5.1.10

sudo ln -sf libcudnn.so.5.1.10 libcudnn.so.5

sudo ln -sf libcudnn.so.5 libcudnn.so

sudo ldconfig

时间: 2024-10-21 07:14:21

安装GPU版本的tensorflow过程总结的相关文章

安装GPU版本的TensorFlow

win10 x64 python 3.6 显卡 GTX 940mx Cuda 8.0 cudnn v5.1 TensorFlow-gpu 1.0.0 1. 安装CUDA 显卡型号支持:https://developer.nvidia.com/cuda-gpus 下载安装CUDA,安装好之后把CUDA安装目录下的bin和lib\64添加到Path环境变量中 2. 安装cuDNN 下载CuDNN需要注册账号 下载安装cuDNN 解压压缩包,把压缩包中bin,include,lib中的文件分别拷贝到c

安装GPU版本的tensorflow填过的那些坑!---CUDA说再见!

那些坑,那些说不出的痛! --------回首安装的过程,真的是填了一个坑又出现了一坑的感觉.记录下了算是自己的笔记也能给需要的人提供一点帮助. 1 写在前面的话 其实在装GPU版本的tensorflow最难的地方就是装CUDA的驱动.踩过一些坑之后,终于明白为什么Linus Torvald 对英伟达有那么多的吐槽了.我的安装环境是ubuntu16.04,安装的是CUDA-8.0.其他驱动安装一般不会遇到很大的问题,都是一些小问题,一般不会卡很久.可以参考官网的安装过程. 2 眼花缭乱的CUDA

Ubuntu 16安装GPU版本tensorflow

pre { direction: ltr; color: rgb(0, 0, 0) } pre.western { font-family: "Liberation Mono", "Courier New", monospace } pre.cjk { font-family: "Nimbus Mono L", "Courier New", monospace } pre.ctl { font-family: "Li

CentOS 下yum安装指定版本mysql的过程

在linux安装指定版本mysql是一个困难的事情,yum安装一般是安装的mysql5.1,现在经过自己不懈努力终于能用yum安装mysql5.5了. 1.安装mysql-5.5的yum源 rpm -ivh http://repo.mysql.com/yum/mysql-5.5-community/el/6/x86_64/mysql-community-release-el6-5.noarch.rpm 2.修改安装好的yum源 编辑 /etc/yum.repos.d/mysql-communit

关于gpu版本的tensorflow+anaconda+jupyter的一些安装问题(持续更新)

关于anaconda安装,虽然清华镜像站资源很丰富,但是不知道是网络还是运气的问题,用这个路径安装的时候总是出现文件丢失.具体表现可能是anaconda prompt 找不到,conda命令无效等问题(已经加了系统变量), 我自己的问题发现是Scripts安装包总是不全,因为当时是初学,干脆就用了miniconda来暂时代替,也可以通过miniconda安装,比较快可以满足初学需要. 进度需要,现在安装anaconda,一开始没有清理垃圾页面,同时从两个源下载,就出现了下图这种问题,打不开,而且

tensorflow 安装gpu版本

pip install tensorflow-gpu  # stable pip install tf-nightly      # preview 原文地址:https://www.cnblogs.com/ls1997/p/11708644.html

pycharm+annaconda3+python3.5.2 + 安装tensorflow-gpu版本 [gtx 940mx + Cuda7.0+cudnn v4.0 ]

1.安装cuda Toolkit 和cudnn (百度云可下载,版本需要对应) 2.配置环境变量: 3.安装cudnn(需要拷贝一些dll和lib来进行配置) 4.进入cmd,找到anaconda3的pip路径,用下面的命令来执行,可以卸载cpu版本的tensorflow,安装gpu版本的tensorflow pip uninstall tensorflow pip install tensorflow-gpu 完成,tensorflow在训练时候会自动调用gpu来进行计算

【转】Ubuntu 16.04安装配置TensorFlow GPU版本

之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.04 python 2.7 Flask tensorflow GPU 版本 安装nvidia driver 经过不断踩坑的安装,终于google到了靠谱的方法,首先检查你的NVIDIA VGA card model sudo lshw -numeric -C display 可以看到你的显卡信息,比如

windows10安装tensorflow的gpu版本(pip3安装方式)

前言: TensorFlow 有cpu和 gpu两个版本:gpu版本需要英伟达CUDA 和 cuDNN 的支持,cpu版本不需要:本文主要安装gpu版本. 1.环境 gpu:确认你的显卡支持 CUDA,这里确认. vs2015运行时库:下载64位的,这里下载,下载后安装. python 3.6/3.5:下载64位的,这里下载,下载后安装. pip 9.0.1(确认pip版本 >= 8.1,用pip -V 查看当前 pip 版本,用python -m pip install -U pip升级pip