Book Report( Fuzzy random variable , MST , Possibilistic programming)

Book Report on “Fuzzy random minimum spanning tree problems through possibilistic programming and the expectation optimization model”

Part1: Theoretical basis

1.Fuzzy random variable 2.MST、Minimal Ratio Spanning Tree    3.Possibilistic    Programming  4.Expectation Optimization Model

1.Fuzzy random variable

Definition and Usage : Fuzzy random variables generalize random variables, random vectors and random sets. The expected value of a fuzzy variable is a natural generalization of the integral of a set-valued function (Refer to Madan [1]).  In short, the usage of fuzzy random variables is to simulate human decision or natural.

2.MST、Minimal Ratio Spanning Tree

Basic algorithm: Kruskal , Prim , Dinkelbach , Bisection Algorithm

New learning algorithm: Dinkelbach’s Method

Introduction of Dinkelbach’s Method:

This algorithm can solve the problems like find some point x0 which satisfies

                              

This problem can convert to another form:

                      

This problem can be solved with simple bisection algorithm. But Dinkelbach algorithm can solve this problem in O(log(nM)). This algorithm can be easily understood from graph.

As shown in the graph, we have to find θ0 that satisfied z(θ0) = 0, we try θ’ first, and we find z(θ’) > 0, and then , we can then assign next point θ =  . This way is much quicker than Bisection algorithm. Besides, in MEGIDDO [2], that paper prove that the problem like ( , if problem like ( can be solvable within O[p(n)] comparisons and O[q(n)] additions, then B is solvable in time O[p(n)(q(n) + p(n))].

3.Possibilistic Programming ( Haven’t finished yet)

4.Expectation Optimization Model ( Haven’t finished yet)

Part2: The understanding of this thesis

Question 1: What?

In this paper, they deal with minimum spanning tree problems where each edge weight is a fuzzy random variable. After transform this problem into a more simple one , the problem to be solved is a minimum ratio spanning tree problem.

Question 2: How?

Fuzzy random variable, Possibilistic Programming , Expectation Optimization Model , Prim algorithm , Dinkelbach algorithm.

Question 3: Why better?

In this paper , the author just put forward a new way to solve the realistic problem . The algorithm he use is based on existing algorithm. So , I would like to say that the author is creative and good at knowledge application.

Part3: Unsolved Problem

  1. The exact implementation of Fuzzy Random Variable.
  2. The possibility programming and the Expectation Optimization Model which are used in conversion process of interphase .
时间: 2024-11-08 07:07:19

Book Report( Fuzzy random variable , MST , Possibilistic programming)的相关文章

Introduction to Probability (5) Continus random variable

CONTINUOUS RANDOM VARIABLES AND PDFS  连续的随机变量,顾名思义.就是随机变量的取值范围是连续的值,比如汽车的速度.气温.假设我们要利用这些參数来建模.那么就须要引入连续随机变量. 假设随机变量X是连续的,那么它的概率分布函数能够用一个连续的非负函数来表示,这个非负函数称作连续随机变量的概率密度函数(probability density function).并且满足: 假设B是一个连续的区间,那么: watermark/2/text/aHR0cDovL2Js

Codeforces Round #348 (VK Cup 2016 Round 2, Div. 1 Edition) C. Little Artem and Random Variable 数学

C. Little Artem and Random Variable Little Artyom decided to study probability theory. He found a book with a lot of nice exercises and now wants you to help him with one of them. Consider two dices. When thrown each dice shows some integer from 1 to

Introduction to Probability (5) Discrete random variable

1.Basic concept 随机变量的定义:随机变量是指针对实验结果的函数. 随机变量的函数可以生成另外一个随机变量 离散型随机变量的定义: 离散型随机变量是指有有限个取值的实验结果的实值函数.每个离散型随机变量有PMF给出每个随机变量取值的概率. 2.PMF(probability mass function) 如何获得PMF? 将随机变量X取值x的所有概率相加,得到Px(x). 伯努利分布:对于一件事情发生与否的概率分布,发生的概率为P,例如掷一枚硬币,head的概率为P,那么PMF为:

Jmeter入门16 数据构造之随机数Random Variable & __Random函数

 接口测试有时参数使用随机数构造.jmeter添加随机数两种方式 1  添加配置 > Random Variable  2  __Random函数   ${__Random(1000,9999)} 方式一 Random Variable  方式二  __Random()函数 添加http请求,2个参数:订单号,用户分别是两种方式生成的. 订单号 = 日期+__Random函数生成随机数 用户名= 随机变量输出的固定格式随机数 random_function orderid_${__time(yy

CF 668C Little Artem and Random Variable

题目链接:http://codeforces.com/problemset/problem/641/D 题目大意:一共有两个骰子,每个骰子都有n个面,上面分别是1到n,投到每个面的概率不可知,但是知道投到每个面也就是每个值的最大的概率与最小的概率分别是多少,问两个骰子投到每个面的概率分别是多少 解题思路:数学题 字超级丑请忽略 其中ax是a骰子得到x的概率,bx是b骰子得到x的概率 它们相加等于得到最大x与得到最小x的概率相加,然后用ax表示bx,替换1式中的ax,就能得到一元二次方程,直接解就

标准库random

random - Random variable generators. 随机变量生成器 class Random(_random.Random) -- Random number generator base class used by bound module functions. 以下是所有的random的方法: 1 import random 2 print(random.random()) #生成一个0-1之间的浮点数随机数[0,1] 3 print(random.randint(1,

3.Discrete Random Variables and Probability Distributions

1. Random Variables Random variables  variable: because different numerical values are possible; random: because the observed value depends on which of the possible experimental outcomes results. For a given sample space δ of some experiment, a rando

continuous random formula

2. The hazard or failure rate function of a non-negative continuous random variable X isdefined to bewhere f(x) is the pdf of X and F(x) is its cdf. We can also define h(x) byh(x) = lim#0P(x X x + |Xx).(a) A useful formula for the expected value of a

Draft-TCAD

IEEEtran.cls 1 %% 2 %% IEEEtran.cls 2007/03/05 version V1.7a 3 %% 4 %% 5 %% This is the official IEEE LaTeX class for authors of the Institute of 6 %% Electrical and Electronics Engineers (IEEE) Transactions journals and 7 %% conferences. 8 %% 9 %% S