Hadoop CDH5 集群管理

Hadoop 是一个开源项目,所以很多公司在这个基础进行商业化,Cloudera 对 Hadoop做了相应的改变。Cloudera 公司的发行版,我们将该版本称为 CDH(Cloudera Distribution Hadoop),它最主要的作用是管理、监控、诊断、集成。

这个很像咱们日常安装软件一样,点击下一步,下一步,即可完成hadoop 、hbase、zookeper、spark  等等, 确实对那些快速搭建集群是一个好的选择!

有兴趣的可以去看看:http://www.jikexueyuan.com/course/2582_1.html?ss=2

时间: 2024-10-13 00:17:53

Hadoop CDH5 集群管理的相关文章

Hadoop的集群管理与安全机制

HDFS数据管理 1.设置元数据与数据的存储路径,通过 dfs.name.dir,dfs.data.dir,fs.checkpoint.dir(hadoop1.x). hadoop.tmp.dir,dfs.namenode.name.dir,dfs.namenode.edits.dir,dfs.datanode.data.dir(hadoop2.x)等属性来设置: 2.经常执行HDFS文件系统检查工具FSCK,eg:hdfs fsck /liguodong -files -blocks: [[e

第131讲:Hadoop集群管理工具均衡器Balancer 实战详解学习笔记

第131讲:Hadoop集群管理工具均衡器Balancer 实战详解学习笔记 为什么需要均衡器呢? 随着集群运行,具体hdfs各个数据存储节点上的block可能分布得越来越不均衡,会导致运行作业时降低mapreduce的本地性. 分布式计算中精髓性的一名话:数据不动代码动.降低本地性对性能的影响是致使的,而且不能充分利用集群的资源,因为导致任务计算会集中在部分datanode上,更易导致故障. balancer是hadoop的一个守护进程.会将block从忙的datanode移动到闲的datan

王家林的云计算分布式大数据Hadoop征服之旅:HDFS&MapReduce&HBase&Hive&集群管理

一:课程简介: 作为云计算实现规范和实施标准的Hadoop恰逢其时的应运而生,使用Hadoop用户可以在不了解分布式底层细节的情况下开发出分布式程序,从而可以使用众多廉价的计算设备的集群的威力来高速的运算和存储,而且Hadoop的运算和存储是可靠的.高效,的.可伸缩的,能够使用普通的社区服务器出来PB级别的数据,是分布式大数据处理的存储的理想选择. 本课程会助你深入浅出的掌握Hadoop开发(包括HDFS.MapReduce.HBase.Hive等),并且在此基础上掌握Hadoop集群的配置.维

第130讲:Hadoop集群管理工具DataBlockScanner 实战详解学习笔记

第130讲:Hadoop集群管理工具DataBlockScanner 实战详解学习笔记 DataBlockScanner在datanode上运行的block扫描器,定期检测当前datanode节点上所有的block,从而在客户端读到有问题的块前及时检测和修复有问题的块. 它有所有维护的块的列表,通过对块的列表依次的扫描,查看是否有校验问题或错误问题,它还有截流机制. 什么叫截流机制?DataBlockScanner扫描时会消耗大量的磁盘带宽,如果占用磁盘带宽太大,会有性能问题.所以它会只占用一小

Hadoop集群管理--保证集群平稳地运行

本篇介绍为了保证Hadoop集群平稳地运行,需要深入掌握的知识,以及一些管理监控的手段,日常维护的工作. HDFS 永久性数据结构 对于管理员来说,深入了解namenode,辅助namecode和datanode等HDFS组件如何在磁盘上组织永久性数据非常重要. 洞悉各文件的用法有助于进行故障诊断和故障检出. namenode的目录结构 namenode被格式化后,将在${dfs.namenode.name.dir}/current 目录下,产生如下的目录结构:VERSION.edits.fsi

Hadoop集群管理

1.简介 Hadoop是大数据通用处理平台,提供了分布式文件存储以及分布式离线并行计算,由于Hadoop的高拓展性,在使用Hadoop时通常以集群的方式运行,集群中的节点可达上千个,能够处理PB级的数据. Hadoop各个模块剖析:https://×××w.cnblogs.com/funyoung/p/9889719.html 2.Hadoop集群架构图 3.Hadoop集群搭建 3.1 修改配置 1.配置SSH以及hosts文件 由于在启动hdfs.yarn时都需要对用户的身份进行验证,且集群

从Storm学习集群管理

简介 Storm是当前最流行的分布式实时计算平台,使用场景是根据Storm定义的接口规范编写一个实时处理流,然后提交到Storm平台处理,Storm平台解析该处理流,使其并行.分布式地在集群中运行,并附带相应的状态监控.本文主要描述Storm的集群管理这块的内容,处理流的相关接口逻辑规范不作涉及. Storm集群监控管理的目标是管理和监控用户提交的处理流作业(类似于Hadoop监控管理mr-job). Storm系统架构 Storm遵循经典的master-slave架构,nimbus节点即为ma

使用Docker在本地搭建Hadoop分布式集群

学习Hadoop集群环境搭建是Hadoop入门必经之路.搭建分布式集群通常有两个办法: 要么找多台机器来部署(常常找不到机器) 或者在本地开多个虚拟机(开销很大,对宿主机器性能要求高,光是安装多个虚拟机系统就得搞半天……). 那么,问题来了! 有没有更有可行性的办法? 提到虚拟化,Docker最近很是火热!不妨拿来在本地做虚拟化,搭建Hadoop的伪分布式集群环境.虽然有点大材小用,但是学习学习,练练手也是极好的. 文章比较长,建议先倒杯水,听我慢慢到来…… 先说一下我的思路吧: 先使用Dock

一共81个,开源大数据处理工具汇总(下),包括日志收集系统/集群管理/RPC等

作者:大数据女神-诺蓝(微信公号:dashujunvshen).本文是36大数据专稿,转载必须标明来源36大数据. 接上一部分:一共81个,开源大数据处理工具汇总(上),第二部分主要收集整理的内容主要有日志收集系统.消息系统.分布式服务.集群管理.RPC.基础设施.搜索引擎.Iaas和监控管理等大数据开源工具. 日志收集系统 一.Facebook Scribe 贡献者:Facebook 简介:Scribe是Facebook开源的日志收集系统,在Facebook内部已经得到大量的应用.它能够从各种