欧拉函数简介:
欧拉函数只是工具:提供1到N中与N互质的数
定义和简单性质
欧拉函数在OI中是个非常重要的东西,不知道的话会吃大亏的.
欧拉函数用希腊字母φ表示,φ(N)表示N的欧拉函数.
对φ(N)的值,我们可以通俗地理解为小于N且与N互质的数的个数(包含1).
欧拉函数的一些性质:
1.对于素数p, φ(p)=p-1,对于对两个素数p,q φ(pq)=pq-1
欧拉函数是积性函数,但不是完全积性函数.
证明:
函数的积性即:若m,n互质,则φ(mn)=φ(m)φ(n).由“m,n互质”可知m,n无公因数,所以φ(m)φ(n)=m(1-1/p1)(1-1/p2)(1-1/p3)…(1-1/pn)·n(1-1/p1‘)(1-1/p2‘)(1-1/p3‘)…(1-1/pn‘),其中p1,p2,p3...pn为m的质因数,p1‘,p2‘,p3‘...pn‘为n的质因数,而m,n无公因数,所以p1,p2,p3...pn,p1‘,p2‘,p3‘...pn‘互不相同,所以p1,p2,p3...pn,p1‘,p2‘,p3‘...pn‘均为mn的质因数且为mn质因数的全集,所以φ(mn)=mn(1-1/p1)(1-1/p2)(1-1/p3)…(1-1/pn)(1-1/p1‘)(1-1/p2‘)(1-1/p3‘)…(1-1/pn‘),所以φ(mn)=φ(m)φ(n).
即φ(mn)=φ(n)*φ(m)只在(n,m)=1时成立.
2.对于一个正整数N的素数幂分解N=P1^q1*P2^q2*...*Pn^qn.
φ(N)=N*(1-1/P1)*(1-1/P2)*...*(1-1/Pn).
3.除了N=2,φ(N)都是偶数.
4.设N为正整数,∑φ(d)=N (d|N).
根据性质2,我们可以在O(sqrt(n))的时间内求出一个数的欧拉函数值.
如果我们要求1000000以内所有数的欧拉函数,怎么办.
上面的方法复杂度将高达O(N*sqrt(N)).
我们来看看线性筛法的程序:
1 //直接求解欧拉函数 2 int euler(int n){ //返回euler(n) 3 int res=n,a=n; 4 for(int i=2;i*i<=a;i++){ 5 if(a%i==0){ 6 res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出 7 while(a%i==0) a/=i; 8 } 9 } 10 if(a>1) res=res/a*(a-1); 11 return res; 12 }
它在O(N)的时间内遍历了所有的数,并且有很多的附加信息,
那么我们是不是能在筛素数的同时求出所有数的欧拉函数呢.
答案是可以.
φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1、p2…pk为n的所有素因子。
比如:φ(12)=12*(1-1/2)(1-1/3)=4。
利用这个就比较好求了,可以用类似求素数的筛法。
先筛出N以内的所有素数,再以素数筛每个数的φ值。
比如求10以内所有数的φ值:
设一数组phi[11],赋初值phi[1]=1,phi[2]=2...phi[10]=10;
然后从2开始循环,把2的倍数的φ值*(1-1/2),则phi[2]=2*1/2=1,phi[4]=4*1/2=2,phi[6]=6*1/2=3....;
再是3,3的倍数的φ值*(1-1/3),则phi[3]=3*2/3=2,phi[6]=3*2/3=2,phi[9]=.....;
再5,再7...因为对每个素数都进行如此操作,因此任何一个n都得到了φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk)的运算
觉得这个“筛”还是比较好用的,以前求数的所有因子之和也是用的它。
代码如下:
筛法求欧拉函数
1 void Init(){ 2 euler[1]=1; 3 for(int i=2;i<Max;i++) 4 euler[i]=i; 5 for(int i=2;i<Max;i++) 6 if(euler[i]==i) 7 for(int j=i;j<Max;j+=i) 8 euler[j]=euler[j]/i*(i-1);//先进行除法是为了防止中间数据的溢出 9 }
另一种实现:
1 void PHI() //即可以求出素数,还可以求出欧拉函数的值! 模板。 2 { 3 int cnt=0; 4 for(int i=2;i<M;i++){ 5 if(vis[i]==0){ 6 prime[cnt++]=i; 7 phi[i]=i-1; //i如果是素数,那么前面i-1个都与它互质。 8 } 9 for(int j=0;j<cnt&&prime[j]*i<M;j++){ 10 vis[i*prime[j]]=1; 11 if(i%prime[j]==0){ 12 phi[i*prime[j]]=phi[i]*prime[j]; 13 break; 14 } 15 else phi[i*prime[j]]=phi[i]*phi[prime[j]]; 16 } 17 } 18 }