【C#进阶系列】20 托管堆和垃圾回收

托管堆基础

一般创建一个对象就是通过调用IL指令newobj分配内存,然后初始化内存,也就是实例构造器时做这个事。

然后在使用完对象后,摧毁资源的状态以进行清理,然后由垃圾回收器来释放内存。

托管堆除了能避免错误使用已经被释放的内存,也会减少内存泄漏,大多数类型都无需资源清理,垃圾回收器会自动释放资源。

当然也有需要立即清理的,比如一些包含了本机资源的类型(如文件、套接字和数据库连接等),可在这些类中调用一个Dispose方法。(当然有的类对这个方法封装了一下,可能是别的名字比如断开数据库连接的close)

在托管堆上分配资源

CLR要求所有对象都从托管堆分配。

进程初始化时,CLR划出一个地址空间区域作为托管堆。CLR还维护一个指针,即NextObjPtr。该指针指向下一个对象在堆中的分配未知。

一个区域被非垃圾对象填满后,CLR会分配更多的区域,这个过程不断重复,直到整个进程地址空间都被填满。32位进程最多分配1.5G,64位进程最多分配8TB。

当创建一个对象时,首先会计算该对象类型字段(包括基类)所需字节数,加上对象的开销所需的字节数(即类型对象指针和同步块索引)。

然后CLR会检查区域中是否有分配对象所需字节数大小的内存。如果托管堆有,那么就在NextObjPtr指向的地址放入对象,且NextObjPtr会加上对象占用的字节数得到新值,即下个对象放入时的地址。

通过垃圾回收器(GC)回收资源

CLR在创建对象时发现没有足够内存分配该对象,那么就会执行垃圾回收。

CLR在进行垃圾回收时,首先会暂停所有线程,

标记阶段:然后CLR会遍历堆中所有的引用对象,将同步块索引字段中的一位设为0,表示所有对象都要删除。然后检查所有的活动根(即所有引用类型的字段以及方法的参数和局部变量),查看它们引用了哪些对象。任何根引用了堆上的对象,那么CLR就标记那个对象,将同步块索引字段中的位设为1,如果对象已经被标记为1了,那么就不再重新检查对象的字段。标记为1的也就是被引用的对象,称为可达的,标记为0的就是不可达的。此时CLR就知道了哪些对象可以删除,哪些对象不能删除。

压缩阶段:CLR对堆中已标记的对象进行搬移内存位置(且对象所有的根的引用也自然会跟着变动),使得被标记的对象紧密相连,即占用连续的内存空间。这样不仅减小了应用程序的工作集,从而提升了访问性能,还得到了大量的未占用内存空间,并且解决了内存碎片化的问题。

最后,恢复所有线程。

静态字段引用的对象一直存在,直到用于加载类型的AppDomain卸载为止。内存泄漏的一个常见原因就是让静态字段引用某个集合对象,然后不停地往集合添加数据项。静态字段使集合对象一直存活,而集合对象使所有数据项一直存活。因此应该尽量避免使用静态字段。(或者参照前面的玩法,当我们不用静态变量的时候,可以立马置为null,那么垃圾就会被回收)。

有一个神奇的垃圾回收特例——Timer。原因是它会每隔一段时间去调用回调函数,但是根据之前学的垃圾回收玩法可以知道当Timer的变量离开了作用域,且没有其它函数引用了Timer对象,那么在垃圾回收时Timer就会被回收掉。也就不会去执行回调函数了。(所以说慎用Timer,这里有这么一个大坑)

代:提升性能

CLR的GC是基于代的垃圾回收器。它对代码做了如下假设:

  • 对象越新,生存期越短
  • 对象越老,生存期越长
  • 回收堆的一部分,速度快于回收整个堆

第0代:新添加到堆的对象称为第0代对象,垃圾回收器从未检查过它们。

第1代:第0代对象经过一次垃圾回收,但是并没有被当做垃圾释放掉,那么就会在压缩阶段一起放入第1代对象区域。

第2代:第1代对象又经过了一次垃圾回收,但是并没有被当做垃圾释放掉,那么就会在压缩阶段一起放入第2代对象区域。没有第3代,第2代放着的就是经过了2次和2次以上垃圾回收的对象。

第0代内存区域满了就会进行垃圾回收,此时不仅会回收第0代的区域,还会去判断第1代区域是否也满了,满了也回收第1代,不满的话即时第1代里面有不可达的对象,那么也不会回收第1代。

CLR初始化时,会为这三代分别选择内存预算,以此判断什么时候该回收了。但是CLR的垃圾回收器是自调节的。

也就是说

如果垃圾回收器发现第0代回收后存活下来的对象很少,那么就会减少第0代的预算,这样的话垃圾回收就会发生得更频繁了,然而垃圾回收器每次做的事更少了,这减小了工作集。如果没有一个存活的话,连压缩都免了。

如果垃圾回收器发现第0代回收后存活下来的对象很多,那么就会加大第0代的预算,这样的话垃圾回收就会发生得不频繁了,然而垃圾回收器每次回收的内存要多得多。(如果没有回收到足够的内存,那么垃圾回收器会执行一次完整回收,如果还是没有足够内存,那么就会抛出OutOfMemoryException异常)。

上面是用第0代举例,第1、2代也如是。

垃圾回收触发条件

CLR在检测第0代超过预算时会触发一次GC,这是GC最常见的触发条件,还有其它的触发如下:

  • 代码显示调用System.GC的静态Collect方法
  • Windows报告低内存情况
  • CLR正在卸载AppDomain
  • CLR正在关闭

大对象

CLR将对象分为大对象和小对象,以85000字节为界限。

大对象不是在小对象的地址空间分配,而是在进程地址空间的其它地方分配。

目前版本的GC不压缩大对象,因为在内存中移动它们代价过高。(可能会造成空间碎片)

大对象总是第2代,所以只能为需要长时间存活的资源生成大对象,否则若短时间存活的大对象放在第二代中,因为之前讲到一次回收过多内存,就会将代的预算减少,导致更频繁回收第2代,会损害性能。

垃圾回收模式

CLR启动时会选择一个GC模式,进程终止前该模式不会改变:

  • 工作站模式

    • 该模式针对客户端应用程序优化GC。GC造成延时很低,应用程序线程挂起时间很短,避免使用户感到焦虑。在该模式下,GC假定机器上运行的其它应用程序都不会消耗太多的CPU资源。
  • 服务器模式
    • 该模式针对服务器端应用程序优化GC。被优化的主要是吞吐量和资源利用。GC假定机器上没有运行其它应用程序,并假定机器上所有的CPU都可以用来辅助完成GC。该模式造成托管堆被分为几个区域(section),每个CPU一个。开始垃圾回收时,垃圾回收器在每个CPU上都运行一个特殊线程,每个线程和其他线程并发回收它自己的区域。对于工作者线程(worker thread)行为一致的服务器应用程序,并发回收能很好地进行。这个功能要求应用程序在多CPU计算机上运行,使线程能真正地同时工作吗,从而获得性能上的提升。

应用程序默认以工作站GC模式运行。寄宿了CLR的服务器应用程序(比如ASP.NET和Sql Server)可请求CLR加载“服务器”GC,但如果是单处理器计算机上运行,CLR将总是使用工作站GC模式。

独立应用程序可在配置文件中,加上下面配置项告诉CLR使用服务器模式:

<configuration>
  <runtime>
    <gcServer enabled="true"/>
  </runtime>
</configuration>

除了这两种模式,GC还支持两种子模式:并发(默认)和非并发。

在并发模式下,GC有一个额外线程,能在运行时并发标记对象。

而由另一个线程去判断是否压缩对象,GC可以更倾向于决定不压缩,有利于增强性能,但会增大应用程序工作集。使用并发垃圾回收器,消耗的内存比非并发更多。

加上以下配置项告诉CLR使用非并发模式:

<configuration>
  <runtime>
    <gcConcurrent enabled="false"/>
  </runtime>
</configuration>

使用需要特殊清理的类型

大多数类型只需要内存就可以了,然而有的类型还需要本机资源。比如System.IO.FileStream类型需要打开一个文件(本机资源)并保存文件的句柄。

包含本机资源的类型被GC时,GC会回收对象在托管堆中使用的内存。但这样会造成本机资源(GC对它一无所知)的泄漏,所以CLR提供了称为终结的机制,允许对象在被判定为垃圾之后,但在对象内存被回收之前执行一些代码。

任何包装了本机资源(文件,网络连接,套接字,互斥体)的类型都支持终结。CLR判定一个对象不可达时,对象将终结它自己,释放它包装的本机资源。之后GC会从托管堆回收对象。

C#的语法,跟析构函数差不多,但是所代表的意义不同

 public class Troy {
        ~Troy() {
            //这里的代码就是垃圾回收前执行的代码,这段代码会被放在一个try块中,而finally部分放的是base.Finalize
        }
    }

这个语法最后在IL代码里还是生成一个叫Finalize的方法。

被视为垃圾的对象在垃圾回收完毕后才调用Finalize方法,所以这些对象的内存不是马上被回收,因为Finalize方法可能要执行访问字段的代码。

可终结对象在回收时必须存活,造成它被提升到另一代,使对象活得比正常时间长。这增大了内存耗用,所以应尽量避免终结。

终结的内部原理

在创建新对象的时候,会在堆中分配内存。如果对象的类型定义了Finalize方法,那么在该类型的实例构造器被调用之前,会将指向该对象的指针放入到一个终结列表里。

终结列表是一个由垃圾回收器控制的内部数据结构,列表的每一项都指向一个个对象——回收该对象的内存前应调用它的Finalize方法。

在每次要回收垃圾对象时标记阶段走完都会去扫描终结列表,如果存在垃圾对象的引用,该引用被移除终结列表,并附加到freachable队列。(此时对象将不再被认为是垃圾,不能回收其内存,被称为对象复活了)

freachable队列也是垃圾回收器的一个内部数据结构,队列中的每个引用所指向的对象都已经准备好调用Finalize方法了。

CLR用一个特殊的、高优先级的专用线程调用Finalize方法来避免死锁。

如果freachable队列为空,那么此线程睡眠,一旦不为空,此线程会被唤醒,将每一项都从队列中移除,并且同时调用每个对象的Finalize方法。

然后进入压缩阶段,将这些复活的对象提升到下一代。

然后清空freachable队列,并执行每个对象的Finalize方法。

到了下次执行垃圾回收时,因为终结列表已经没有这些对象的指针了,所以现在它们被认为是真正的垃圾了,也就会被释放。

整个过程中,执行了两次垃圾回收才释放掉内存,在实际的过程中,由于对象可能被提升至另一代,所以可能要求不止进行两次垃圾回收。

手动监视和控制对象的生存期

CLR为每个AppDomain都提供了一个GC句柄表,允许应用程序监视和手动控制对象的生存期。这个就太6了,感觉用不到,用得到的时候回来再看吧。

PS:

最近两章效率真是慢,一方面因为双休没看书和一些突发状况,另一方面也是因为已经开始了CLR的核心机制之旅,里面的很多东西确实没听过,感觉难度开始增大了。

在此过程中键盘莫名其妙坏了,并且两次关机废了写了一半的博客。今天才发现原来强行关机后再开机,浏览器中写了一半的博客是可以恢复的。

时间: 2024-10-05 03:44:09

【C#进阶系列】20 托管堆和垃圾回收的相关文章

.NET 托管堆和垃圾回收

托管堆基础 简述:每个程序都要使用这样或那样的资源,包括文件.内存缓冲区.屏幕空间.网络连接.....事实上,在面向对象的环境中,每个类型都代表可供程序使用的一种资源.要使用这些资源,必须为代表资源的类型分配内存.以下是访问一个资源所需步骤:1.调用IL指令newobj,为代表资源的类型分配内存.(C# new操作符)2.初始化内存,设置资源的初始状态.(一般指构造函数)3.访问类型的成员来使用资源.(使用成员变量.方法.属性等)4.摧毁资源的状态以进行清除.(???Dispose???)5.释

CLR via C#-托管堆和垃圾回收

托管堆基础 访问类型的资源 面向对象的环境中,每个类型都代表可供程序使用的一种资源.要使用这些资源,必须为代表资源的类型分配内存.以下是访问一个资源所需的步骤. ①调用IL指令newobj,为代表资源的类型分配内存,由new操作符来完成. ②初始化内存,设置资源的初始状态并使资源可用,类型的实例构造器负责设置初始状态. ③访问类型的成员来使用资源. ④摧毁资源的状态以进行清理. ⑤释放内存,垃圾回收器独自负责这一步. 托管堆为开发人员提供了一个简化的编程模型,分配并初始化资源并直接使用. 大多数

重温CLR(十五) 托管堆和垃圾回收

本章要讨论托管应用程序如何构造新对象,托管堆如何控制这些对象的生存期,以及如何回收这些对象的内存.简单地说,本章要解释clr中的垃圾回收期是如何工作的,还要解释相关的性能问题.另外,本章讨论了如何设计应用程序来最有效地使用内存. 托管堆基础 每个程序都要使用这样或那样的资源,包括文件.内存缓冲区.屏幕空间.网络连接.数据库资源等.事实上,在面向对象的环境中,每个类型都代表可提供程序使用的一种资源.要使用这些资源,必须为代表资源的类型分配内存.以下是访问一个资源所需的步骤 1 调用IL指令newo

.NET的堆和栈04,对托管和非托管资源的垃圾回收以及内存分配

在" .NET的堆和栈01,基本概念.值类型内存分配"中,了解了"堆"和"栈"的基本概念,以及值类型的内存分配.我们知道:当执行一个方法的时候,值类型实例会在"栈"上分配内存,而引用类型实例会在"堆"上分配内存,当方法执行完毕,"栈"上的实例由操作系统自动释放,"堆"上的实例由.NET Framework的GC进行回收. 在" .NET的堆和栈02,值类型和

C# 托管堆和垃圾回收器GC

这里我们讨论的两个东西:托管堆和垃圾回收器,前者是负责创建对象并控制这些对象的生存周期,后者负责回收这些对象. 一.托管堆分配资源 CLR要求所有的对象都从托管堆分配.进程初始化时,CLR划出一个地址空间区域作为托管堆.CLR还要维护一个指针P,该指针指向下一个对象在堆中的分配位置. 那么我们进一步深入看看创建一个对象(也就是new 一个对象)时CLR做了哪些工作呢. 1.计算类型字段需要的字节数. 2.加上对象开销所需要的字节数,每个对象都有两个开销:类型对象指针和同步块索引 3.CLR检查区

Java GC系列(4):垃圾回收监视和分析

在这个Java GC系列教程中,让我们学习用于垃圾回收监视和分析的工具.然后,选用一种工具来监视一个Java示例程序的垃圾回收过程.如果你是一名初学者,你最好仔细阅读该系列教程.你可以从这里(垃圾回收介绍)开始. Java GC监视和分析工具 下面是一些可用的工具,每个都有自己的优势和缺点.我们可以通过选择正确的工具并分析,来提升应用程序的性能.这篇教程中,我们选用Java VisualVM. Java VisualVM Naarad GCViewer IBM Pattern Modeling

Java GC专家系列1:理解Java垃圾回收

了解Java的垃圾回收(GC)原理能给我们带来什么好处?对于软件工程师来说,满足技术好奇心可算是一个,但重要的是理解GC能帮忙我们更好的编写Java应用程序. 上面是我个人的主观的看法,但我相信熟练掌握GC是成为优秀Java程序员的必备技能.如果你对GC执行过程感兴趣,也许你只是有一定的开发应用的经验:如果你仔细考虑过如何选择合适的GC算法,说明你对你所开发的程序有了全面的了解.当然这对一个优秀的程序员来说未必是一个通用的标准,但很少人会反对我关于”理解GC是作为优秀Java程序员的必备技能”的

.Net程序的内存管理和垃圾回收机制

.NET 内存管理和垃圾回收 C/C++ 程序需要开发者手动分配和释放内存,.Net程序则使用垃圾回收技术自动收集不再使用的内存.垃圾回收器(GC)使用引用 跟踪占用内存的对象,如果对象被设置为null或已不在使用范围,GC就会标志该对象为可回收,这样GC就可以回收被这些对象占用的内存. 垃圾回收器(GC)使用Win32? VirtualAlloc() 接口为自己的堆分配内存,.Net托管堆是一个巨大连续的虚拟内存.GC先预留虚拟内存,当托管堆增长时则提交内存.GC跟踪托管堆末尾可用的地址并把下

Java垃圾回收(二) 堆内存的分代回收

堆内存的分代回收 Java针对堆的垃圾回收,将堆分为了三个较小的部分:新生代.老年代.持久代.新生代主要使用复制和标记-清除垃圾回收算法,年老代主要使用标记-整理垃圾回收算法,因此java虚拟中针对新生代和年老代分别提供了多种不同的垃圾收集器. 1. 分代回收的依据: 对象生存时间长短:大部分对象在Young期间就被回收. 不同代采用不同的垃圾回收策略:对存活时间不同的对象分类,用不同的垃圾回收算法进行高效的有针对回收. 2. 堆内存的分代: Young代: 回收机制:因为对象数量少,所以采用复