Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 12190 | Accepted: 8651 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
#include <cstdio> #include <iostream> #include <vector> #include <assert.h> using namespace std; const int MOD = (int)1e4; struct Mat { vector<vector<int> > m; Mat() {} Mat(int a, int b) { m.resize(a); for(int i=0; i<m.size(); i++) { m[i].resize(b); } } }; Mat operator * (const Mat& a, const Mat& b) { assert(a.m[0].size() == b.m.size()); Mat c(a.m.size(), b.m[0].size()); for(int i=0; i<a.m.size(); i++) { for(int j=0; j<b.m[0].size(); j++) { c.m[i][j] = 0; for(int k=0; k<b.m.size(); k++) { c.m[i][j] = (c.m[i][j] + a.m[i][k] * b.m[k][j] % MOD) % MOD; } } } return c; } Mat operator ^ (Mat a, int k) { assert(a.m.size() == a.m[0].size()); Mat c(a.m.size(), a.m.size()); for(int i=0; i<a.m.size(); i++) { for(int j=0; j<a.m.size(); j++) { c.m[i][j] = (i==j); } } while(k) { if(k&1) { c = c * a; } a = a * a; k>>=1; } return c; } int main () { int n; Mat a(2,2), b(2,1); a.m[0][0]=a.m[1][0]=a.m[0][1]=1; a.m[1][1]=0; b.m[0][0]=1; b.m[1][0]=0; while(scanf("%d", &n) != EOF && n != -1) { if(n==0) printf("%d\n", b.m[1][0]); else if(n==1) printf("%d\n", b.m[0][0]); else { Mat ans = (a^(n-1)) * b; printf("%d\n", ans.m[0][0]); } } return 0; }
时间: 2024-11-05 20:03:44