<机器学习基础>
逻辑回归,SVM,决策树
1、逻辑回归和SVM的区别是什么?各适用于解决什么问题?
https://www.zhihu.com/question/24904422
答案:https://www.zhihu.com/question/26768865
基础知识:https://blog.csdn.net/ChangHengyi/article/details/80577318
3、支持向量机属于神经网络范畴吗?
https://www.zhihu.com/question/22290096
4、如何理解决策树的损失函数?
https://www.zhihu.com/question/34075616
5、各种机器学习的应用场景分别是什么?例如,k近邻,贝叶斯,决策树,svm,逻辑斯蒂回归和最大熵模型。
https://www.zhihu.com/question/26726794
主成分分析,奇异值分解
6、SVD降维体现在什么地方?
https://www.zhihu.com/question/34143886
7、为什么PCA不被用来避免过拟合?
https://www.zhihu.com/question/47121788
随机森林,GBDT、集成学习
8、为什么说bagging是减少variance,而boosting是减少bias?
https://www.zhihu.com/question/26760839
9、基于树的adaboost和Gradient Tree Boosting的区别是什么?
https://www.zhihu.com/question/46784781
adaboost对于每个样本有一个权重,样本预估误差越大,权重越大。gradient boosting则是直接用梯度拟合残差,没有样本权重的概念。
10、机器学习算法中GBDT和XGBOOST的区别?
https://www.zhihu.com/question/41354392
11、为何在实际的kaggle比赛中,GBDT和Random Forest效果非常好?
https://www.zhihu.com/question/51818176
过拟合
12、机器学习中用来防止过拟合的方法有哪些?
https://www.zhihu.com/question/59201590
原文地址:https://www.cnblogs.com/ariel-dreamland/p/10594907.html