FFT 物理意义(转)

FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。

现在圈圈就根据实际经验来说说FFT结果的具体物理意义。
一个模拟信号,经过ADC采样之后,就变成了数字信号。采样
定理告诉我们,采样频率要大于信号频率的两倍,这些我就
不在此罗嗦了。

采样得到的数字信号,就可以做FFT变换了。N个采样点,
经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT
运算,通常N取2的整数次方。

假设采样频率为Fs,信号频率F,采样点数为N。那么FFT
之后结果就是一个为N点的复数。每一个点就对应着一个频率
点。这个点的模值,就是该频率值下的幅度特性。具体跟原始
信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT
的结果的每个点(除了第一个点直流分量之外)的模值就是A
的N/2倍。而第一个点就是直流分量,它的模值就是直流分量
的N倍。而每个点的相位呢,就是在该频率下的信号的相位。
第一个点表示直流分量(即0Hz),而最后一个点N的再下一个
点(实际上这个点是不存在的,这里是假设的第N+1个点,也
可以看做是将第一个点分做两半分,另一半移到最后)则表示
采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率
依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。
由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果
采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。
1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒
时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时
间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率
分辨力,则必须增加采样点数,也即采样时间。频率分辨率和
采样时间是倒数关系。
  假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是
An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,
就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:
An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。
对于n=1点的信号,是直流分量,幅度即为A1/N。
    由于FFT结果的对称性,通常我们只使用前半部分的结果,
即小于采样频率一半的结果。

好了,说了半天,看着公式也晕,下面圈圈以一个实际的
信号来做说明。

假设我们有一个信号,它含有2V的直流分量,频率为50Hz、
相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、
相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:

S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)

式中cos参数为弧度,所以-30度和90度要分别换算成弧度。
我们以256Hz的采样率对这个信号进行采样,总共采样256点。
按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个
点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号
有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、
第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?
我们来看看FFT的结果的模值如图所示。

图1 FFT结果
    从图中我们可以看到,在第1点、第51点、和第76点附近有
比较大的值。我们分别将这三个点附近的数据拿上来细看:
1点: 512+0i
2点: -2.6195E-14 - 1.4162E-13i 
3点: -2.8586E-14 - 1.1898E-13i

50点:-6.2076E-13 - 2.1713E-12i
51点:332.55 - 192i
52点:-1.6707E-12 - 1.5241E-12i

75点:-2.2199E-13 -1.0076E-12i
76点:3.4315E-12 + 192i
77点:-3.0263E-14 +7.5609E-13i
  
    很明显,1点、51点、76点的值都比较大,它附近的点值
都很小,可以认为是0,即在那些频率点上的信号幅度为0。
接着,我们来计算各点的幅度值。分别计算这三个点的模值,
结果如下:
1点: 512
51点:384
76点:192
    按照公式,可以计算出直流分量为:512/N=512/256=2;
50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的
幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来
的幅度是正确的。
    然后再来计算相位信息。直流信号没有相位可言,不用管
它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,
结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再
计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,
换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。
根据FFT结果以及上面的分析计算,我们就可以写出信号的表达
式了,它就是我们开始提供的信号。

总结:假设采样频率为Fs,采样点数为N,做FFT之后,某
一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值
除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以
N);该点的相位即是对应该频率下的信号的相位。相位的计算
可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角
度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒
的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,
这在一些实际的应用中是不现实的,需要在较短的时间内完成
分析。解决这个问题的方法有频率细分法,比较简单的方法是
采样比较短时间的信号,然后在后面补充一定数量的0,使其长度
达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。
具体的频率细分法可参考相关文献。

[附录:本测试数据使用的matlab程序]
close all; %先关闭所有图片
Adc=2;  %直流分量幅度
A1=3;   %频率F1信号的幅度
A2=1.5; %频率F2信号的幅度
F1=50;  %信号1频率(Hz)
F2=75;  %信号2频率(Hz)
Fs=256; %采样频率(Hz)
P1=-30; %信号1相位(度)
P2=90;  %信号相位(度)
N=256;  %采样点数
t=[0:1/Fs:N/Fs]; %采样时刻

%信号
S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
%显示原始信号
plot(S);
title(‘原始信号‘);

figure;
Y = fft(S,N); %做FFT变换
Ayy = (abs(Y)); %取模
plot(Ayy(1:N)); %显示原始的FFT模值结果
title(‘FFT 模值‘);

figure;
Ayy=Ayy/(N/2);   %换算成实际的幅度
Ayy(1)=Ayy(1)/2;
F=([1:N]-1)*Fs/N; %换算成实际的频率值
plot(F(1:N/2),Ayy(1:N/2));   %显示换算后的FFT模值结果
title(‘幅度-频率曲线图‘);

figure;
Pyy=[1:N/2];
for i="1:N/2"
 Pyy(i)=phase(Y(i)); %计算相位
 Pyy(i)=Pyy(i)*180/pi; %换算为角度
end;
plot(F(1:N/2),Pyy(1:N/2));   %显示相位图
title(‘相位-频率曲线图‘);

时间: 2024-10-11 03:03:10

FFT 物理意义(转)的相关文章

FFT结果的物理意义

图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度.如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低:而对 于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高.傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱.从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的.从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域.换句话说,

FFT算法的物理意义

FFT是离散傅立叶变换的高速算法,能够将一个信号变换到频域.有些信号在时域上是非常难看出什么特征的,可是如果变换到频域之后,就非常easy看出特征了.这就是非常多信号分析採用FFT变换的原因.另外,FFT能够将一个信号的频谱提取出来,这在频谱分析方面也是经经常使用的. 尽管非常多人都知道FFT是什么,能够用来做什么,怎么去做,可是却不知道FFT之后的结果是什意思.怎样决定要使用多少点来做FFT. 如今圈圈就依据实际经验来说说FFT结果的详细物理意义.一个模拟信号,经过ADC採样之后,就变成了数字

FFT的物理意义

最近有看到论坛里一些童鞋在问FFT相关的问题,现分享一篇我认为还不错的入门介绍,看完基本可以懂得FFT怎么从时域转换到频域的,我当初也是靠这个理解了FFT.希望对大家有所帮助. FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域.有些信号在时域上是很难看出什么特征的,但是如 果变换到频域之后,就很容易看出特征了.这就是很多信号分析采用FFT变换的原因.另外,FFT可以将一个信号的频谱 提取出来,这在频谱分析方面也是经常用的. 虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却

关于卷积的血腥实例、本质及物理意义

作为一名苦逼工科生,<信号与系统>+<数字信号处理>是绕不过去的坎,各种让人头疼的概念与数学公式:傅里叶变化.拉普拉斯变化.Z变换.卷积.循环卷积.自相关.互相关.离散傅里叶变化.离散傅里叶时间变化-- 前一段时间在知乎发现一个有趣例子,生动形象地解释了卷积的物理意义,且解释的较为准确,下面,正文来了: 比如说你的老板命令你干活,你却到楼下打台球去了,后来被老板发现,他非常气愤,扇了你一巴掌(注意,这就是输入信号,脉冲),于是你的脸上会渐渐地(贱贱地)鼓起来一个包,你的脸就是一个系

卷积的本质及物理意义(全面理解卷积)

卷积的本质及物理意义(全面理解卷积) 卷积的本质及物理意义 提示:对卷积的理解分为三部分讲解1)信号的角度2)数学家的理解(外行)3)与多项式的关系 1 来源 卷积其实就是为冲击函数诞生的.“冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号.古人曰:“说一堆大道理不如举一个好例子”,冲量这一物理现象很能说明“冲击函数”.在t时间内对一物体作用F的力,倘若作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变.于是在用t做横坐标.F做纵坐标的坐标系中,就如同一个面积不变的长方形,

傅立叶变换的物理意义

1.为什么要进行傅里叶变换,其物理意义是什么? 傅立叶变换是数字信号处理领域一种很重要的算法.要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义.傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加.而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率.振幅和相位. 和傅立叶变换算法对应的是反傅立叶变换算法.该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号. 因此,可以说,傅立

好文!特征值和特征向量的几何和物理意义 【转载东山狼的blog】

我们知道,矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量.在这个变换的过程中,原向量主要发生旋转.伸缩的变化.如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值. 实际上,上述的一段话既讲了矩阵变换特征值及特征向量的几何意义(图形变换)也讲了其物理含义.物理的含义就是运动的图景:特征向量在一个矩阵的作用下作伸缩运动,伸缩的幅度由特征值确定.特征值大于1,所有属于此特征值的特征向量身形

对卷积物理意义的理解

橘一个例子. 假设有一个人一直扇你巴掌,不考虑脸被扇麻痹了没感觉,不考虑你火大扇回去之类的干扰,求在t时刻感受到的疼痛程度Y(t)的值.这个Y(t)的值跟两个值有关. f(x)表示在x时刻扇巴掌的力度,x是某一时刻值 h(y)表示是某一巴掌在y分钟过分的疼痛程度(疼痛感会衰减) 在t时刻感受到的疼痛是包括之前所有巴掌的造成的疼痛感.因此要计算Y(t),就必须先算出在[0,t]这个时间内的任一时刻扇的一巴掌在t时刻能造成的疼痛. 也就是t时刻的巴掌力度 f(τ) 乘以 过了t-τ 分钟后的疼痛程度

卷积的物理意义

原文链接:http://www.cnblogs.com/ylhome/archive/2010/01/07/1641121.html 卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的.因为是对模拟信号论述的,所以常常带有繁琐的算术推倒,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢? 卷积表示为y(n) = x(n)*h(n).使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成y(0),y(1),y(2) and so on; 这是系统响应出来