机器学习之神经网络模型-下(Neural Networks: Representation)

3. Model Representation I

1

神经网络是在模仿大脑中的神经元或者神经网络时发明的。因此,要解释如何表示模型假设,我们不妨先来看单个神经元在大脑中是什么样的。

我们的大脑中充满了如上图所示的这样的神经元,神经元是大脑中的细胞。其中有两点值得我们注意,一是神经元有像这样的细胞主体(Nucleus),二是神经元有一定数量的输入神经和输出神经。这些输入神经叫做树突(Dendrite),可以把它们想象成输入电线,它们接收来自其他神经元的信息。神经元的输出神经叫做轴突(Axon),这些输出神经是用来给其他神经元传递信号或者传送信息的。

简而言之,神经元是一个计算单元,它从输入神经接受一定数目的信息,并做一些计算,然后将结果通过它的轴突传送到其他节点或者大脑中的其他神经元。

下面是一组神经元的示意图:


神经元利用微弱的电流进行沟通。这些弱电流也称作动作电位,其实就是一些微弱的电流。所以如果神经元想要传递一个消息,它就会就通过它的轴突发送一段微弱电流给其他神经元。

2

上图中,黄色的圆圈就代表了一个神经元,X为输入向量,θ 代表神经元的权重(实际上就是我们之前所说的模型参数),hθ (X)代表激励函数(在神经网络术语中,激励函数只是对类似非线性函数g(z)的另一个术语称呼,g(z)等于1除以1加e的-z次方)。

实际上,你可以这样理解,神经元就是权重θ。

当讲输入送进神经元后,经计算(实际上就是XTθ )会有一个输出,这个输出再送入激励函数中,便得到了神经元的真实输出。

注意:当我们绘制一个神经网络时,当我绘制一个神经网络时,通常我只绘制输入节点 x1、x2、x3等等,但有时也可以增加一个额外的节点 x0 ,这个 x0 节点有时也被称作偏置单位或偏置神经元。但因为 x0 总是等于1,所以有时候,我们会画出它,有时我们不会画出,这要看画出它是否对例子有利。

神经网络就是不同的神经元组合在一起。第一层为输入层,最后一层为输出层,而中间的所有层均为隐藏层。

注意:输入单元x1、x2、x3,再说一次,有时也可以画上额外的节点 x0。同时,这里有3个神经元,我在里面写了a1(2) 、 a2(2)和a3(2) ,然后再次说明,我们可以在这里添加一个a0(2) ,这和 x0 一样,代表一个额外的偏度单元,它的值永远是1(注意:a1(2) 、 a2(2) 和 a3(2) 中计算的是g(XTθ)的值,而a0(2)中存放的就是偏置1)。

如果一个网络在第 j 层有 sj 个单元,在 j+1 层有 sj +1 个单元,那么矩阵 θ(j) 即控制第 j 层到第 j+1 层的映射。

矩阵 θ(j) 的维度为 s(j+1) * (sj+1) ,s(j+1)行, (sj+1) 列。

总之,以上我们的这样一张图,展示了是怎样定义一个人工神经网络的。这个神经网络定义了函数h:从输入 x 到输出 y 的映射。我将这些假设的参数
记为大写的 θ,这样一来不同的 θ,对应了不同的假设,所以我们有不同的函数,比如说从 x 到 y 的映射。

以上就是我们怎么从数学上定义神经网络的假设。

4. Model Representation II

5. Examples and Intuitions I

运用神经网络,解决“与”、“或”的分类问题。

6. Examples and Intuitions II

神经网络还可以用于识别手写数字。

它使用的输入是不同的图像或者说就是一些原始的像素点。第一层计算出一些特征,然后下一层再计算出一些稍复杂的特征,然后是更复杂的特征,然后这些特征实际上被最终传递给最后一层逻辑回归分类器上,使其准确地预测出神经网络“看”到的数字。

以下展示了通过神经网络进行多分类的例子。

时间: 2024-10-02 23:37:33

机器学习之神经网络模型-下(Neural Networks: Representation)的相关文章

Neural Networks Representation ----- Stanford Machine Learning(by Andrew NG)Course Notes

Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了两个星期来介绍,可见Neural Networks内容之多.言归正传,通过之前的学习我们知道,使用非线性的多项式能够帮助我们建立更好的分类模型.但当遇特征非常多的时候,需要训练的参数太多,使得训练非常复杂,使得逻辑回归有心无力. 例如我们有100个特征,如果用这100个特征来构建一个非线性的多项式模

Machine Learning - VIII. Neural Networks Representation (Week 4)

http://blog.csdn.net/pipisorry/article/details/4397356 机器学习Machine Learning - Andrew NG courses学习笔记 Neural Networks Representation神经网络表示 Non-linear Hypotheses非线性假设 Neurons and the Brain神经元和大脑 Model Representation模型表示 Examples and Intuitions示例和直觉知识 Mu

机器学习——BP神经网络模型

一.什么是BP BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一.BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.BP神经网络模型拓扑结构包括输入层(input).隐层(hide layer)和输出层(output

#Week6 Neural Networks : Representation

一.Non-linear Hypotheses 线性回归和逻辑回归在特征很多时,计算量会很大. 一个简单的三层神经网络模型: \[a_i^{(j)} = \text{"activation" of unit $i$ in layer $j$}\]\[\Theta^{(j)} = \text{matrix of weights controlling function mapping from layer $j$ to layer $j+1$}\] 其中:\[a_1^{(2)} = g(

机器学习之神经网络模型-上(Neural Networks: Representation)

在这篇文章中,我们一起来讨论一种叫作"神经网络"(Neural Network)的机器学习算法,这也是我硕士阶段的研究方向.我们将首先讨论神经网络的表层结构,在之后再具体讨论神经网络学习算法. 神经网络实际上是一个相对古老的算法,并且沉寂了一段时间,不过到了现在它又成为许多机器学习问题的首选技术. 1. Non-linear Hypotheses 之前我们已经介绍过线性回归和逻辑回归算法了,那为什么还要研究神经网络? 为了阐述研究神经网络算法的目的,我们首先来看几个机器学习问题作为例子

Neural networks representation 习题

answer:  It's stay the same.  (结果不变) 原因:交换parameters matrix 1的两行使得其与matrix a1运算得到matrix a2时交换了  a2中的第一个元素和第二个元素,即a2 subscript1 and a2 subscipt2. 正好与其对应相乘的parameters matrix 2中的参数1和2交换了位置,所以结果不变.

Neural Networks: Representation

原文地址:https://www.cnblogs.com/7fancier/p/9427050.html

Neural Networks Learning----- Stanford Machine Learning(by Andrew NG)Course Notes

本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解决不了或效果不佳时人工神经网络方法才能显示出其优越性.尤其对问题的机理不甚了解或不能用数学模型表示的系统,如故障诊断.特征提取和预测等问题,人工神经网络往往是最有利的工具.另一方面, 人工神经网络对处理大量原始数据而不能用规则或公式描述的问题, 表现出极大的灵活性和自适应性. 神经网络模型解决问题的

Stanford机器学习---第五讲. 神经网络的学习 Neural Networks learning

原文见http://blog.csdn.net/abcjennifer/article/details/7758797,加入了一些自己的理解 本栏目(Machine learning)包含单參数的线性回归.多參数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检測.大规模机器学习等章节.全部内容均来自Standford