K - Max Sum Plus Plus
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
Now I think you have got an AC in Ignatius.L‘s "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(im, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don‘t want to write a special-judge module, so you don‘t have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
//题意是:第一行 m ,n (n<=1000000) 两个整数,然后第二行 n 个数,求 m 段不相交连续序列最大和。
自己想了一阵,还是没有思路。。。这个题很好。
这篇博客写得十分详细
http://www.cnblogs.com/ACMan/archive/2012/08/09/2630038.html
dp[i][j]代表的状态是 i 段连续序列的最大和,并且最后一段一定包含 num[j]
所以写出状态转移方程 dp[i][j]=max{dp[i][j-1]+a[j],max{dp[i-1][t]}+a[j]} i-1=<t<j-1
dp[i][j-1]代表连续的状态,后面是不连续的状态,取最大值。
数据很大,只能用一维数组
不断更新状态,用一个数据 big 保存 i 段最大的和,最后直接输出,就是答案
436ms
1 #include <stdio.h> 2 #include <string.h> 3 4 #define inf 0x7ffffff 5 #define MAXN 1000005 6 int num[MAXN]; 7 int dp[MAXN]; 8 int pre[MAXN]; 9 10 int max(int a,int b) 11 { 12 return a>b? a:b; 13 } 14 15 int main() 16 { 17 int m,n; 18 int i,j,big; 19 while (scanf("%d%d",&m,&n)!=EOF) 20 { 21 for (i=1;i<=n;i++) 22 { 23 scanf("%d",&num[i]); 24 pre[i]=0; 25 } 26 27 pre[0]=0; 28 dp[0]=0; 29 30 for (i=1;i<=m;i++) 31 { 32 big=-inf; 33 for (j=i;j<=n;j++) 34 { 35 dp[j]=max(dp[j-1],pre[j-1])+num[j];//连续的最大和,或者不连续的最大和 36 pre[j-1]=big; //保存 i - 1 段 最大和 37 big=max(big,dp[j]);//保证是 i 段最大的和 38 } 39 } 40 printf("%d\n",big); 41 } 42 return 0; 43 }