POJ 2031 && ZOJ 1718--Building a Space Station【最小生成树 && kurskal && 水题】

Building a Space Station

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5655   Accepted: 2848

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.

The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is
quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor‘, or
(3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least
three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with
the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells‘ surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form
a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.

n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after
the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834

题意:

就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能够相互连通。如果两个球有重叠的部分则算为已连通,无需再搭桥。求搭建通路的最小费用(费用就是边权,就是两个球面之间的距离)。

思路:边权 = AB球面距离 = A球心到B球心的距离 –  A球半径 – B球半径,如果边权 <= 0,说明两球接触,即已连通,此时边权为0,剩下的就是最小生成树的模板。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cmath>
#define maxn 1010
#define maxm 20000
using namespace std;
int n;
int per[110];
struct node{
    int u, v;
    double w;
};

struct NODE{
    double x, y, z, r;
};
NODE map[110];
node edge[11000];

double change(NODE a, NODE b){
    return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y) + (a.z - b.z) * (a.z - b.z));
}

int cmp(node a, node b){
    return a.w < b.w;
}

int find(int x){
    if(x == per[x])
        return x;
    return per[x] = find(per[x]);
}

int join (int x, int y){
    int fx = find(x);
    int fy = find(y);
    if(fx != fy){
        per[fx] = fy;
        return true;
    }
    else return false;
}

int main (){
    while(scanf("%d", &n) ,n){
        for(int i = 1; i <= n; ++i)
            scanf("%lf%lf%lf%lf", &map[i].x, &map[i].y, &map[i].z, &map[i].r);
        int i, j;
        int k = 0;
        for(i = 1; i <= n - 1; ++i)
        for(j = i + 1; j <= n; ++j){
            edge[k].u = i;
            edge[k].v = j;
            if(change(map[i], map[j]) - map[i].r - map[j].r < 0)
                edge[k].w = 0;
            else
                edge[k].w = change(map[i], map[j]) - map[i].r - map[j].r;
            k++;
        }
        sort(edge, edge + k, cmp);
        double sum = 0;
        for(int i = 1; i <= n; ++i)
            per[i] = i;
        for(int i = 0; i < k; ++i){
            if(join(edge[i].u, edge[i].v))
                sum += edge[i].w;
        }
        printf("%.3lf\n", sum);
    }
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-11-04 13:55:58

POJ 2031 && ZOJ 1718--Building a Space Station【最小生成树 && kurskal && 水题】的相关文章

POJ 2031 Building a Space Station (最小生成树)

Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepted: 2614 Description You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You ar

POJ - 2031C - Building a Space Station最小生成树

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. The space station is made up with a number of units, called

Building a Space Station——最小生成树

题目链接 题意: 给出n个球体的球心坐标和半径,可以在两个球体的表面连一条通路,代价为距离. 求使得所有球体联通的最小花费. 题解: 最小生成树裸板子 暴力把每个球体的表面之间的距离求出(即 dis=球心距 - 半径和) 注意 如果 dis<0 则 dis=0 代码: #include<iostream> #include<stdio.h> #include<math.h> #include<algorithm> #include<cstring

ZOJ 1718 POJ 2031 Building a Space Station 修建空间站 最小生成树 Kruskal算法

题目链接:ZOJ 1718 POJ 2031 Building a Space Station 修建空间站 Building a Space Station Time Limit: 2 Seconds      Memory Limit: 65536 KB You are a member of the space station engineering team, and are assigned a task in the construction process of the statio

POJ 2031 Building a Space Station

Building a Space Station Time Limit: 1000ms Memory Limit: 30000KB This problem will be judged on PKU. Original ID: 2031 64-bit integer IO format: %lld      Java class name: Main You are a member of the space station engineering team, and are assigned

poj 2031 Building a Space Station 【最小生成树 Prim】

Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5778   Accepted: 2874 Description You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You ar

poj 2031 Building a Space Station【最小生成树prime】【模板题】

Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepted: 2855 Description You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You ar

[2016-04-14][POJ][203][Building a Space Station]

时间:2016-04-14 21:43:30 星期四 题目编号:[2016-04-14][POJ][203][Building a Space Station] 题目大意:给定n个球体,每个球体可能重合,可能包含,可能分离,问把每个球体连接起来(重合和包含看做已经连接),至少需要多长的路 分析:最小生成树,边权为 max(0,disij?ri?rj)max(0,disij?ri?rj),即重合和内含,边权为0 #include<cstdio> #include<cstring> #

poj 2931 Building a Space Station &amp;lt;克鲁斯卡尔&amp;gt;

Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5869 Accepted: 2910 Description You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are ex