ArcGIS教程:什么是经验贝叶斯克里金法?

  简介

  经验贝叶斯克里金法 (EBK) 是一种地统计插值方法,可自动执行构建有效克里金模型过程中的那些最困难的步骤。Geostatistical Analyst 中的其他克里金方法需要您手动调整参数来接收准确的结果,而 EBK 可通过构造子集和模拟的过程来自动计算这些参数。

  经验贝叶斯克里金法与其他克里金方法也有所不同,它通过估计基础半变异函数来说明所引入的误差。其他克里金方法通过已知的数据位置计算半变异函数,并使用此单一半变异函数在未知位置进行预测;此过程隐式假定估计的半变异函数是插值区域的真实半变异函数。由于不考虑半变异函数估计的不确定性,其他克里金方法都低估了预测的标准误差。

  经验贝叶斯克里金法在地统计向导 中以地理处理工具的形式提供。

  优点和缺点

  优点

  需要极少的交互式建模;

  预测标准误差比其他克里金方法更准确;

  可准确预测一般程度上不稳定的数据;

  对于小型数据集,比其他克里金法更准确;

  缺点

  1、处理时间会随着输入点数、子集大小或重叠系数的增加而快速增加。应用变换也会增加处理时间。参数介绍如下

  2、处理速度比其他克里金方法慢,尤其是输出为栅格时。

  3、协同克里金法和各向异性不可用。

  、半变异函数模型中的少数参数限制了自定义功能。其他克里金方法为半变异函数模型提供了多种选择。

  5、对数经验变换对异常值尤其敏感。如果将该变换用于含有异常值的数据,则可能会得到大于或小于输入点值若干个数量级的预测结果。该参数在下面的“变换”部分将有所介绍。

  半变异函数估计

  与其他克里金法(使用加权最小二乘)不同,EBK 中的半变异函数参数是使用受限最大似然法 (REML) 估计的。由于REML 对大型数据集有计算限制,输入数据首先被分为多个特定大小的重叠子集(默认为每子集 100 个点)。在每个子集中,按以下方式估计半变异函数:

  1、通过子集中的数据估计半变异函数。

  2、将此半变异函数用作模型,新数据会在子集的每个输入位置进行无条件模拟。

  3、通过已模拟的数据估计新的半变异函数。

  4、将步骤 2 和步骤 3 重复执行指定次数。在每次重复中,步骤 1 中估计的半变异函数用于模拟输入位置的一组新数据,已模拟的数据用于估计新的半变异函数。

  此过程将为每个子集创建大量半变异函数,并且在将它们绘制在一起时,结果是按密度着色的半变异函数分布(蓝色越深,通过该区域的半变异函数就越多)。此外,分布的中值用红色实线表示,25% 和 75% 百分数值用红色虚线表示,如下图所示。

  

  每个子集中模拟的半变异函数数量默认为 100,其中每一个半变异函数都是子集的真实半变异函数的估计。

  对于每个位置,都使用唯一的半变异函数分布生成预测,该分布是通过周围子集的分布加权综合计算得出的;子集距离预测位置越近,给定的权重就越高。

  克里金模型

  经验贝叶斯克里金法与 Geostatistical Analyst 中的其他克里金方法不同,它使用固有的 0 阶随机函数 (IRF-0) 作为克里金模型。

  其他克里金模型假定过程遵循一个总体平均值(或指定趋势),并且各种变化均围绕该平均值。较大的偏差将向平均值拉回,因此值不会偏差过大。但是,EBK 不会呈现出趋于总体平均值的趋势,因此较大偏差变大变小的可能性相同。

  半变异函数模型

  对于给定距离 h,经验贝叶斯克里金法使用以下形式的半变异函数:

  γ(h)= Nugget + b|h|α

  块金值和 b (坡度)必须为正值,而 α (幂)必须介于 0.25 和 1.75 之间。在这些限制下,使用 REML 估计参数。该半变异函数模型没有变程或基台参数,因为函数没有上限。在 EBK 中,可以分析参数估计的经验分布,因为在每个位置都估计了多个半变异函数。单击块金值、坡度或幂选项卡可显示关联参数的分布。下图显示了前一图片中显示的模拟半变异函数的半变异函数参数分布:

  

  单击预览表面上的不同位置,可显示新位置的半变异函数分布和半变异函数参数分布。如果分布在数据值域内没有显著变化,则表明数据处于全局稳态。分布应在整个数据值域内平滑变化,但如果发现在较短距离的分布中出现较大变化,增加重叠系数的值可以平滑分布的过渡。

  变换

  经验贝叶斯克里金法为乘偏斜常态得分变换提供了两个基本分布:经验法和对数经验法。对数经验变换要求所有数据值为正,以保证所有预测结果为正值。它适用于诸如降雨量等不得为负的数据。

  

  如果应用变换,将使用简单克里金模型代替 IRF-0,半变异函数将与指数半变异函数模型拟合。由于这些变化,参数分布更改为块金值、偏基台值和变程值。此外,还会出现一个变换选项卡,在其中显示拟合变换的分布(每个模拟一个)。与半变异函数选项卡相同,变换分布按密度着色,并提供分位数线。

  

  经验贝叶斯克里金法的新参数

  经验贝叶斯克里金法使用三个未在其他克里金方法中出现的参数:

  1、子集大小 - 指定每个子集中的点数。子集越大,EBK 计算耗时越长。

  2、重叠系数 - 指定子集之间的重叠程度。每个输入点均可落入多个子集中,重叠系数指定了各点将落入的子集的平均数。例如,重叠系数 1.5 表示大约一半的点用在一个子集中,另一半的点用在两个子集中。重叠系数的值越大,输出表面越平滑,但也会增加处理时间。

  3、模拟的次数 - 指定将为每个子集模拟的半变异函数的数量。模拟次数越多,生成的预测就越精确,但处理时间也会增加。

时间: 2024-08-04 14:14:16

ArcGIS教程:什么是经验贝叶斯克里金法?的相关文章

ArcGIS教程:根据经验半变异函数拟合模型

半变异函数/协方差建模是空间描述和空间预测之间的关键步骤.地统计的主要应用是预测未采样位置处的属性值(克里金法). 经验半变异函数和协方差可提供有关数据集的空间自相关的信息.但是,不提供所有可能方向和距离的信息.因此,为确保克里金法预测的克里金法方差为正值,根据经验半变异函数/协方差拟合模型(即连续函数或曲线)是很有必要的. 经验半变异函数/协方差值的不同视图 地统计向导可提供经验半变异函数值的三种不同视图.可以使用任意数量(一个.两个或全部三个)的视图来帮助您根据数据拟合模型.默认视图显示了已

ArcGIS教程:不同的克里金模型

克里金方法依赖于数学模型和统计模型.通过添加包含概率的统计模型,可将克里金方法从空间插值的确定性方法中描述的确定性方法中分离出来.对于克里金法,您会将某种概率与预测值相关联;也就是说,这些值不能完全基于统计模型进行预测.以在某一地区测得的氮值这一样本为例.显然,即使样本很大,您也无法预测某个未测量位置处的准确氮值.因此,您不但要尝试预测该值,而且还要评估预测的误差. 克里金方法依赖于自相关概念.相关性通常被视为两种变量相关的趋势.例如,股票市场在利率降低时倾向于上涨,所以称其为负相关.但是,股票

ArcGIS教程:地统计分析

生成用于表达特定属性的连续表面是大多数地理信息系统 (GIS) 应用程序中应具备的一种重要功能.最常用的一种表面类型可能就是 terrain 数字高程模型.对于世界的各个部分来说,在小比例下,这些数据集都易于获得.不过,只有从地表.地下或大气中的位置采集的测量值才可用于生成连续表面.大多数 GIS 建模工具所面对的主要挑战就是,基于现有样本数据尽可能精确地生成表面以及表征预测表面的误差和变异性.新生成的表面用于进一步的 GIS 建模和分析以及 3D可视化.了解该数据的质量可以极大地提高 GIS

ArcGIS教程:区域插值参数

构建有效模型 与所有地统计插值方法一样,区域插值中的预测准确性取决于模型的准确性.了解此事项后,在地统计向导 中构建有效模型时应多加注意. 由于 ArcGIS Geostatistical Analyst 扩展模块中的区域插值是通过克里金框架实现的,因此交互式变异分析是构建模型的重要步骤.通常很难从视觉上判断协方差曲线的质量,因此为每个经验协方差(下图中的蓝十字)提供了置信区间(下图中的红色垂直线段).如果正确指定了协方差模型,预计有 90% 的经验协方差落在置信区间内.在下图中,12 个经验协

ArcGIS教程:3D Analyst基础知识

创建3D视图 以三维形式查看数据能为您提供一个全新的认识.通过三维视图可以深入了解通过相同数据的平面地图不易察觉的内容.例如,您不必根据配置等值线来推断是否存在山谷,您能够实际看到山谷和感到谷底和谷脊的高度差异. ArcGlobe 和 ArcScene 可用于构建多图层 3D 环境,并控制如何对各图层进行符号化.渲染各图层和在 3D 空间中定位各图层.还可以控制 3D 视图的全局属性,如照明度或垂直夸大.可以通过以下方式选择要素:使用要素的属性或要素相对于其他要素的位置,或者在场景或地球中单击各

ArcGIS教程:ArcGIS中矢量裁剪栅格图像

(1)是否需要裁剪栅格图象区域通过一个面状的shapefile表达出来? 如果可以,那么就很简单了. 在ArcMap中,调用空间分析扩展模块,将你感兴趣区的shapefile多边形图层设置为掩膜,然后在栅格计算器中重新计算一下你的图象,它就会沿掩膜裁出. 设置掩膜:空间分析工具条的下拉菜单>option里面设置 (2)用任意多边形剪切栅格数据(矢量数据转换为栅格数据) 2.1在ArcCatlog下新建一个要素类(要素类型为:多边形),命名为:ClipPoly.shp 2.2在ArcMap中,加载

ArcGIS教程:了解测量误差

克里金方法有三种形式 - 普通克里金法.简单克里金法和泛克里金法 - 使用测量误差模型.当同一位置可能具有多个不同的观测值时会出现测量误差.例如,有时需要从地面或空中提取样本,然后将该样本拆分为多个要测量的子样本.如果测量样本的仪器存在差异,则可能需要执行此操作.再比如,可能会将土壤样本的子样本送往不同的实验室进行分析.有时,仪器准确性方面的变化可能已被证实.此时,可能要向模型中输入已知的测量变化. 测量误差模型 测量误差模型是 Z(s) = μ(s) + ε(s) + δ(s), 其中,δ(s

ArcGIS教程:ArcGIS栅格数据的合并和剪切

1.合并:ArcToolBox->DataManagement->Raster->Mosaic. 2.剪切:在ArcMap中,调用空间分析扩展模块,将你感兴趣区的shapefile多边形图层设置为掩膜(空间分析工具条的下拉菜单>option里面设置),然后在栅格计算器中重新计算一下你的图象,它就会沿掩膜裁出. 以上教程来源地理国情监测云平台,更多ArcGIS教程及空间地理信息数据请咨询本平台,电话:010-84896208转898.官方微信号DLGQJC,为您提供3S行业知识及每日

ArcGIS教程:地统计工作流

这一主题将介绍地统计研究的概化工作流以及主要步骤.正如什么是地统计中所述,地统计是用于分析和预测与空间现象或时空现象相关联的值的统计数据类.ArcGIS Geostatistical Analyst 提供一套工具,该工具允许构建使用空间(和时间)坐标的模型.这些模型可以应用于各种情况并通常用于生成未采样位置的预测,也可用于生成这些预测的不确定性的度量值. 与几乎所有数据驱动研究相同,第一步是仔细检查数据.这通常从映射数据集.使用可使数据集可能显示的重要特征清晰可见的分类和颜色方案开始,例如,从北