SVM2---核函数的引入

前边总结了线性SVM,最终转化为一个QP问题来求解。后来又考虑到非线性SVM,如果特征特别特别多的话,直接使用QP的话求解不了,我们经过一系列的转化,把这一问题转化为训练集大小n量级的QP问题。

http://www.cnblogs.com/futurehau/p/6143178.html

在之前的基础之上,我们继续学习,引入核函数的概念,完全避免了特征数目量级的计算问题。接下来依次分析polynomial Kernel, Gaussian Kernel,并对他们进行对比分析。

一、Kernel 的引入

  之前我们得到对偶问题的QP形式:

  

  这似乎是一个n量级的问题,似乎和特征的个数无关,但是仔细一看,Q矩阵每一项的求解涉及到Z空间的内积,这就是特征个数量级的一个操作。所以我们从这里入手,想想怎样可以简化Z空间内积的计算呢?

  以二次变换为例,我们把X空间映射到Z空间,我们现在看看Z空间上的内积表达式是什么,可以怎么转换到X空间上。

  

  好了,我们发现Z空间上的内积刚好可以转换为X空间上的内积。所以我们就想,我们不需要显示的去先把X空间上的数据计算到空间上,然后训练参数,我们可以直接使用X空间上的参数来计算即可,这样大大降       低了我们的计算复杂度。

  

  这样,上述的转换就叫做Kernel函数。它把之前变换后的空间Z上的内积运算转换为原空间上的内积运算。

  我们再回过头来看看之前的对偶QP问题,Z空间上的哪些内积运算可以转换到X空间上呢?

  

  这样一来,所有的训练,测试都没有直接在Z空间上进行内积运算,所有运算都转换到了X空间上。这样所有运算就和你的特征维度没有关系了。

二、pllynomial Kernel

  

三、Gaussian Kernel

  

四、Comparison of Kernels

  

时间: 2024-12-27 09:23:27

SVM2---核函数的引入的相关文章

高斯核函数

高斯核函数 所谓径向基函数 (Radial Basis Function 简称 RBF), 就是某种沿径向对称的标量函数.通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数 , 可记作 k(||x-xc||), 其作用往往是局部的 , 即当x远离xc时函数取值很小. 高斯核函数 - 常用公式 最常用的径向基函数是高斯核函数 ,形式为 k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中xc为核函数中心,σ为函数的宽度参数 , 控制了函数的径向作用范围.

支持向量机(四)-- 核函数

一.核函数的引入 问题1: SVM显然是线性分类器,但数据如果根本就线性不可分怎么办? 解决方案1: 数据在原始空间(称为输入空间)线性不可分,但是映射到高维空间(称为特征空间)后很可能就线性可分了. 问题2: 映射到高维空间同时带来一个问题:在高维空间上求解一个带约束的优化问题显然比在低维空间上计算量要大得多,这就是所谓的"维数灾难". 解决方案2: 于是就引入了"核函数",核函数的价值在于它虽然也是讲特征进行从低维到高维的转换. 二.实例说明 例如图中的两类数据

机器学习中对核函数的理解

http://mp.weixin.qq.com/s?__biz=MzIxNDIwMTk2OQ==&mid=2649077019&idx=1&sn=e0c4a6c502e3668e1dc410f21e531cfd&scene=0#wechat_redirect https://wizardforcel.gitbooks.io/dm-algo-top10/content/svm-4.html. 首先,核函数是什么?到底什么是核函数? 个人理解为:核函数!=内积!=映射!=相似度

支持向量机原理(三)线性不可分支持向量机与核函数

支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理(待填坑) 支持向量机原理(五)线性支持回归(待填坑) 在前面两篇我们讲到了线性可分SVM的硬间隔最大化和软间隔最大化的算法,它们对线性可分的数据有很好的处理,但是对完全线性不可分的数据没有办法.本文我们就来探讨SVM如何处理线性不可分的数据,重点讲述核函数在SVM中处理线性不可分数据的作用. 1. 回顾多项式回归 在线

深入理解图优化与g2o:图优化篇

前言 本节我们将深入介绍视觉slam中的主流优化方法——图优化(graph-based optimization).下一节中,介绍一下非常流行的图优化库:g2o. 关于g2o,我13年写过一个文档,然而随着自己理解的加深,越发感觉不满意.本着对读者更负责任的精神,本文给大家重新讲一遍图优化和g2o.除了这篇文档,读者还可以找到一篇关于图优化的博客: http://blog.csdn.net/heyijia0327 那篇文章有作者介绍的一个简单案例,而本文则更注重对图优化和g2o的理解与评注. 本

Relation Extraction中SVM分类样例unbalance data问题解决 -松弛变量与惩罚因子

转载自:http://blog.csdn.net/yangliuy/article/details/8152390 1.问题描述 做关系抽取就是要从产品评论中抽取出描述产品特征项的target短语以及修饰该target的opinion短语,在opinion mining里面属于很重要的task,很多DM.NLP相关的paper在做这方面的工作.基本的思路是: (1)从sentence的parse tree(比如stanford parser)中选取候选target结点和候选opinion结点,然

SVM详解

SVM入门(一)至(三)Refresh 按:之前的文章重新汇编一下,修改了一些错误和不当的说法,一起复习,然后继续SVM之旅. (一)SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]. 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本

SVM入门(三)线性分类器Part 2

上回说到对于文本分类这样的不适定问题(有一个以上解的问题称为不适定问题),需要有一个指标来衡量解决方案(即我们通过训练建立的分类模型)的好坏,而分类间隔是一个比较好的指标.    在进行文本分类的时候,我们可以让计算机这样来看待我们提供给它的训练样本,每一个样本由一个向量(就是那些文本特征所组成的向量)和一个标记(标示出这个样本属于哪个类别)组成.如下:Di=(xi,yi).xi就是文本向量(维数很高),yi就是分类标记.    在二元的线性分类中,这个表示分类的标记只有两个值,1和-1(用来表

支持向量机(SVM)简介

主要内容 一:SVM简介 二:线性分类 三:分类间隔 四:核函数 五:松弛变量 SVM简介 支持向量机(support vector Machine)是由Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中. 支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模式的复杂性(即对特定训练样本的学习精度,Accurary)和学习能力(即无错误地识别任意样本

SVM十问十答

什么是线性分类器? 线性分类器试图通过训练集中的样本得出一个分类超平面,目标是最大程度地区分训练集中不同类别的样本,最终把这个分类超平面应用于新样本的分类. SVM相比一般的线性分类器有什么不同? SVM以最大化不同类别之间的间隔为优化目标. SVM和逻辑回归有什么区别? 逻辑回归通过sigmoid函数缩小了远离分类超平面那些点的信息,而SVM直接忽略了那些点的信息. 逻辑回归输出样本归属于某一类别的概率,而SVM无法直接输出这一概率. 最大化间隔会带来什么好处? 间隔与分类问题的结构风险有关,