Python函数知识点总结

1.函数的定义
2.如何定义一个函数以及函数语法
3.函数的调用
4.函数的参数(形参,实参)以及参数的传递
5.函数的返回值
6.变量的作用域
7.匿名函数
8.嵌套函数和闭包
9.装饰器

1.函数的定义

函数是组织好的,可重复使用的,用来实现一定功能的代码段。
函数能提高应用的模块性,和代码的重复利用率。

2.如何定义一个函数以及函数语法

函数代码块以def关键词开头,后接函数名称和圆括号()
传入的任何参数和自变量放在圆括号()中间
函数的内容以冒号起始,并且缩进
函数的第一行语句可以选择性的使用文档字符串————用于存放函数说明
return 【表达式】结束函数,选择性的返回一个值给调用方。不带表达式的return相当于返回None
语法:

def function_name(parameters):
    ‘‘‘函数说明‘‘‘
    function_suite
    return [expression]

实例:

def print_test(str_par):
    ‘‘‘打印输入的字符串到标准显示设备上‘‘‘
    print(str_par)
    return
print_test(test_success)

3.函数的调用

定义一个函数只给了函数一个名称,指定了函数里包含的参数和代码块结构。
这个函数的基本结构完成以后,你可以通过另一个函数调用执行,也可以直接从Python提示符执行。
实例:

#!/usr/bin/python
#-*- coding:UTF-8 -*-
#定义函数
def print_test(str_par):
    ‘‘‘打印输入的字符串到标准显示设备上‘‘‘
    print(str_par)
    return

#调用函数
print_test(test_success)

4.函数的参数(形参,实参)以及参数的传递

在python中,类型属于对象,变量是没有类型的。
a = [1,2,3]
a = "hello,world"
以上代码中,[1,2,3]是list类型,"hello world"是string类型,而变量a是没有类型,她仅仅是一个对象的引用(一个指针),可以是list类型对象,也可以指定string类型对象

可更改(mutable)和不可更改(immutable)对象
在python中,string,tuple,number是不可更改的对象,而list,dict等则是可以修改的对象。
1.不可变类型:变量赋值a = 5后在赋值a = 10,这里实际是新生成一个int值对象10,在让a指向它,而5被丢弃,不是改变a的值,相当于新生成了a。
2.可变类型:变量赋值list_a = [1,2,3,4]后在赋值list_a[2] = 5则是将list list_a的第三个元素值更改,本身list_a没有动,只是其内部的一部分值被修改了。

python函数的参数传递:
1.不可变类型:如整数、字符串、元祖。如fun(a),传递的只是a的值,没有影响a对象本身。比如在fun(a)内部修改a的值,只是修改另一个复制的对象,不会影响a本身。
2.可变类型:如列表,字典。如fun(list_a),则是将list_a真正的传过去,修改后fun外部的list_a也会受影响。

python中一切都是对象,严格意义我们不能说值传递还是引用传递,我们应该说传不可变对象和传可变对象。

python传不可变对象实例:

#!/usr/bin/python
#-*- coding:UTF-8 -*-
def ChangeInt(a):
    a = 10

b = 2
ChangeInt(b)
print(b)  #结果是2

实例中有int对象2,指向它的变量是b,在传递给ChangeInt函数时,按传值的方式复制了变量b,a 和b都指向了同一个int对象,在a = 10时,则新生成一个int值对象10,并让a指向它。

传可变对象实例

#!/usr/bin/python
#-*- encoding:UTF-8 -*-

def ChangeList(mylist):
    "修改传入的列表“
    mylist.append([1,2,3,4]);
    print(‘函数内部取值:’,mylist)
    return

#调用Changelist函数
mylist = [10,20,30]
ChangeList(mylist)
print(‘函数外取值:‘,mylist)

实例中传入函数的和在末尾添加新内容的对象用的是同一个引用,故输出结果如下:

函数内取值:[10,20,30,[1,2,3,4]]
函数外取值:[10,20,30,[1,2,3,4]]

实参和形参
形参:定义函数时接收的参数
形参类型:位置参数,动态*args参数,默认参数,动态**kwargs参数

位置参数:位置参数必须以正确的顺序传入函数。调用时的数量必须和声明时的一样。

调用test()函数时,你必选传入一个参数,不然会出现语法错误:

#!/usr/bin/python
# -*- coding: UTF-8 -*-

def test( a ):
   "打印任何传入的字符串"
   print(a);
   return;

#调用test函数
test();
以上实例输出结果:
Traceback (most recent call last):
  File "test.py", line 11, in <module>
    printme();
TypeError: printme() takes exactly 1 argument (0 given)

关键字参数:
关键字参数和函数调用关系紧密,函数调用使用关键字参数来确认传入的参数值。
使用关键字参数允许函数调用时参数的顺序与声明时不一致,因为python解释器能够用参数名匹配参数值。
以下实例在函数test()调用时使用参数名:

#!/usr/bin/python
#-*- coding:UTF-8 -*-

def test(a ,b ):
    print(a)
    rerurn
print(test(a = 2,b = 2)

默认参数:
调用函数时,默认参数的值如果没有传入,则被认为是默认值。下列会打印默认的age,即是没有传入age的参数:

#!/usr/bin/python
#-*- coding:UTF-8 -*-
def test(name,age = 20):
    print(name,age)
    return
test(age = 22,name = jack)
test(name = jack)

动态参数:
你可能需要一个函数能够处理比当初生命是更多的参数。这些参数叫做不定长参数
语法如下:

def function_name(*args,**kwargs):
    function_suite
    return[expression]

加了星号(*)的变量名会存放所有未命名的变量参数。返回为元祖数据类型
加了两个星号(**)的变量名会存放所有关键字参数。返回为字典数据类型

参数定义顺序:位置参数->*args->默认参数->**kwargs

实参:函数调用时传递的参数
实参类型:位置参数,关键字参数
位置参数:必须和函数定义时的参数一对一对应
关键字参数:可以通过*[],*()一次性传递多个参数给*args;通过**{}一次性传递多个参数给**kwargs参数

5.函数的返回值

return语句【表达式】退出函数(结束一个函数的执行),选择性地向调用方返回一个表达式。
返回值可以是任意数据类型
返回值情况:
1,返回值为None的情况
当不写return时,默认返回值为None
return不加参数时,返回None
2,返回值不为None的情况
返回一个值: return xxx 返回一个值(一个变量) 任意数据类型
返回多个值: return a,b,[1,2,3] ; 用一个变量接收时返回的是一个元祖,也可以用相应数量的变量去接收

6.变量的作用域

一个程序的所有变量并不是在哪个位置都可以访问的。访问权限决定于这个变量实在哪里赋值的。
命名空间:
局部命名空间
全局命名空间
内置命名空间

定义在函数内部的变量拥有一个局部作用域,定义在函数外的拥有全局作用域。
局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问。调用函数时,所有在函数内声明的变量名称都将被加入到作用域中。如下实例:

#!/usr/bin/python
#-*- coding:UTF-8 -*-
total = 0 # 这是一个全局变量
def sum(arg1,arg2):
    ‘‘‘返回2个参数的和‘‘‘
    total1 = arg1 + arg2   #total在这里局部变量
    print(‘函数内是局部变量:‘,total)
    return(total)
#调用sum函数
sum(10,20);
print(‘函数外是全局变量:’,total)

#输入结果
函数内是局部变量:30
函数外是全局变量:0

变量查找顺序:先查找全局作用域,然后内置作用域
global关键字:可以是在函数内部声明的变量变成全局变量
nonlocal关键字:可以让内部函数中的变量在上一层函数中生效,外部必须要有这个变量

#!/usr/bin/python
# -*- coding: UTF-8 -*-

globvar = 0

def set_globvar_to_one():
    global globvar    # 使用 global 声明全局变量
    globvar = 1

def print_globvar():
    print(globvar)     # 没有使用 global

set_globvar_to_one()
print  globvar        # 输出 1
print_globvar()       # 输出 1,函数内的 globvar 已经是全局变量

7.匿名函数

python使用lambda来创建匿名函数。
1.lambda只是一个表达式,函数体比def简单很多。
2.lambda的主题式一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。
3.lambda函数拥有自己的命名空间,且不能访问只有参数列表之外或全局命名空间里的参数
4.虽然lambda函数看起来只能写一行,却不等同于C或C++的内联函数,后者的目的是调用小函数时不占用栈内存从而增加运行效率

语法:lambda函数的语法只能包含一个语句,如下:

lambda[arg1[,arg2,......argn]]:expression

如下实例:
#!/usr/bin/python
#-*- coding:UTF-8 -*-
sum = lambda arg1,arg2:arg1 + arg2;
print(‘相加后的值为:‘,sum(10,20)
print(‘相加后的值为:‘,sum(20,20)

以上实例输出结果:
相加后的值为:30
相加后的值为:40

8.嵌套函数和闭包

在一个函数内部定义函数就创建了嵌套函数,如下所示:

def outer():
    outer_var = ‘outer variable‘
    def inner():
        return outer_var
    return innter

在这种类型的函数定义中,函数inner只在函数outer内部有效,所以当内部函数需要被返回(移动到外部作用范围)或被传递给另一个函数时,使用嵌套函数通常比较方便。在如在上面的嵌套函数中,每次调用外部函数时都会创建一个新的嵌套函数实例,这是因为,在每次执行外部函数时,都会执行一次内部函数定义,而其函数体则不会被执行。

嵌套函数可以访问创建它的环境,这是python函数定义语句的直接结果。一个结果是,外部函数中定义的变量可以在内部函数用引用,即是外部函数已经执行结束。

ef outer():
    outer_var = "outer variable"
    def inner():
        return outer_var
    return inner

>>> x = outer()
>>> x
<function inner at 0x0273BCF0>
>>> x()
‘outer variable‘

当内部嵌套的函数引用外部函数中的变量时,我们说嵌套函数相对于引用变量时封闭的。我们可以使用函数对象的一个特殊属性’_closure_‘来访问这个封闭的变量,如下所示:

>>>cl = x.__closure__
>>>cl
(<cell at 0x029E4470:str object at 0x02A0FD90,)
>>>cl[0].cell_contents
‘outer variable‘

python中的闭包有一个古怪的行为。在python2.x以及更低版本中,指向不可变类型(例如字符串和数字)的变量不能再闭包内反弹。

def counter():
    count = 0
    def c():
        count += 1
        return count
    return c

>>> c = counter()
>>> c()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 4, in c
UnboundLocalError: local variable ‘count‘ referenced before assignment

一个相当不可靠的解决方案是,使用一个可变类型来捕获闭包,如下所示:

def counter():
    count = [0]
    def c():
        count[0] += 1
        return count[0]
    return c

>>> c = counter()
>>> c()
1
>>> c()
2
>>> c()
3

python3引入了nonlocal关键字用来解决下面所示的闭包范围问题。

def counter():
       count = 0
       def c():
           nonlocal count
           count += 1
           return count
        return c

闭包可以用来维持状态(与类的作用不同),在一些简单的情况下,还可以提供一种简洁性与可读性比类更强的解决方案

9.装饰器

装饰器的本质:是一个闭包函数
装饰器的功能:在不修改原函数及其调用方式的情况下对原函数功能进行扩展

装饰器结构:

import time
def timer(func):
    def inner():
        start = time.time()
        func()
        print(time.time() - start)
    return inner

@timer   #==> func1 = timer(func1)
def func1():
    print(‘in func1‘)

func1()

带参数的装饰器:

def timer(func):
    def inner(a):
        start = time.time()
        func(a)
        print(time.time() - start)
    return inner

@timer
def func1(a):
    print(a)

func1(1)

带多个参数的装饰器:

import time
def timer(func):
    def inner(*args,**kwargs):
        start = time.time()
        re = func(*args,**kwargs)
        print(time.time() - start)
        return re
    return inner

@timer   #==> func1 = timer(func1)
def func1(a,b):
    print(‘in func1‘)

@timer   #==> func2 = timer(func2)
def func2(a):
    print(‘in func2 and get a:%s‘%(a))
    return ‘fun2 over‘

func1(‘aaaaaa‘,‘bbbbbb‘)
print(func2(‘aaaaaa‘))

带返回值的装饰器:

import time
def timer(func):
    def inner(*args,**kwargs):
        start = time.time()
        re = func(*args,**kwargs)
        print(time.time() - start)
        return re
    return inner

@timer   #==> func2 = timer(func2)
def func2(a):
    print(‘in func2 and get a:%s‘%(a))
    return ‘fun2 over‘

func2(‘aaaaaa‘,‘bbbbbb‘)
print(func2(‘aaaaaa‘))

多个装饰器装饰一个函数:

def wrapper1(func):
    def inner():
        print(‘wrapper1 ,before func‘)
        func()
        print(‘wrapper1 ,after func‘)
    return inner

def wrapper2(func):
    def inner():
        print(‘wrapper2 ,before func‘)
        func()
        print(‘wrapper2 ,after func‘)
    return inner

@wrapper1     #f = wrapper1(f) ---> wrapper1(wrapper2(f)
@wrapper2     #f = wrapper2(f)
def f():
    print(‘in f‘)f()

执行结果:
wrapper1 ,before func
wrapper2 ,before func
in f
wrapper2 ,after func
wrapper1 ,after func

带参数的装饰器:

F = True          #stpe1 装饰器的开关变量
def outer(flag):  #step 2
    def wrapper(func): #step 4
        def inner(*args,**kwargs): #stpe 6
            if flag:               #step 9
                print(‘before‘)   #step 10
                ret = func(*args,**kwargs)  #step 11  执行原函数
                print(‘after‘)             #step13
            else:
                ret = func(*args,**kwargs)
                print(‘123‘)
            return ret                     #step 14
        return inner    #step 7
    return wrapper     #step 5

@outer(F)   #先执行step 3 :outer(True)这个函数,然后step 6:@wrapper   #此处把开关参数传递给装饰器函数
def hahaha():
    pass    #step 12
hahaha()    # step 8    相当于inner()
时间: 2024-10-13 09:57:50

Python函数知识点总结的相关文章

python函数入参和返回值

以下内容参考自runoob网站,以总结python函数知识点,巩固基础知识,特此鸣谢! 原文地址:http://www.runoob.com/python3/python3-function.html 函数格式大体如下def 函数名(参数列表): 函数体 例子: # 计算面积函数 def area(width, height): return width * height 定义一个函数:给了函数一个名称,指定了函数里包含的参数,和代码块结构. 这个函数的基本结构完成以后,不会执行,除非被调用 如

python函数的作用域和引用范围

以下内容参考自runoob网站,以总结python函数知识点,巩固基础知识,特此鸣谢! 原文地址:http://www.runoob.com/python3/python3-function.html 变量作用域 Python 中,程序的变量并不是在哪个位置都可以访问的,访问权限决定于这个变量是在哪里赋值的. 变量的作用域决定了在哪一部分程序可以访问哪个特定的变量名称.Python的作用域一共有4种,分别是: L (Local) 局部作用域 E (Enclosing) 闭包函数外的函数中 G (

python函数的作用域

以下内容参考自runoob网站,以总结python函数知识点,巩固基础知识,特此鸣谢! 原文地址:http://www.runoob.com/python3/python3-function.html 变量作用域python函数的作用域和引用范围 Python 中,程序的变量并不是在哪个位置都可以访问的,访问权限决定于这个变量是在哪里赋值的. 变量的作用域决定了在哪一部分程序可以访问哪个特定的变量名称.Python的作用域一共有4种,分别是: L (Local) 局部作用域 E (Enclosi

3.关于python函数,以及作用域,递归等知识点

一.使用函数编程的好处. 大大的提高了代码的重用行,重复的逻辑或者操作,可以定义到一个函数里,多次调用. 下面是关于提高代码重用性的例子. 现在老板让你写一个监控程序,监控服务器的系统状况,当cpu\memory\disk等指标的使用量超过阀值时即发邮件报警,你掏空了所有的知识量,写出了以下代码. while True: if cpu利用率 > 90%: #发送邮件提醒 连接邮箱服务器 发送邮件 关闭连接 if 硬盘使用空间 > 90%: #发送邮件提醒 连接邮箱服务器 发送邮件 关闭连接 i

Python函数解析

对于Python的函数,我们需要记住的是: 1. 函数的默认返回值是None. 2. python是一个自上而下逐行解释并执行的语言.因此,函数的定义必须在函数被调用之前.同名的函数,后定义的会覆盖前面定义的. 3. 程序执行的时候,遇到函数定义只会先将函数整体读进内存,并不立刻执行.等到函数被调用的时候才执行函数体. 4. python函数的参数传递的是一个引用而不是值.这点很重要.这一点可以用下面的例子证明: def f1(a_list): s = id(a_list) a_list[0]

python Django知识点总结

python Django知识点总结 一.Django创建项目: CMD 终端:Django_admin startproject sitename(文件名) 其他常用命令: 其他常用命令: 通过类创建表--python manage.py makemigrations --python manage.py migrate 其他命令: python manage.py runserver 0.0.0.0 python manage.py stratapp appname python manag

python 类知识点总结

python 类知识点总结 面向对象思想: 1.设计的时候,一定要明确应用场景 2.由对象分析定义类的时候,找不到共同特征和技能不用强求 1.简述类.对象.实例化.实例这些名词的含义: 类:从一组对象中提取对象共同的特征和属性,构成一个类. 对象:具有数据属性和函数属性的集合体 实例化:由类生成一个对象的方法,就是实例化 实例:类的实例化就会产生一个实例(对象) 类: 对象就是类的抽象 类实例成对象的过程就是实例化 实例就是对象 2.面向对象的三大特性是什么? 继承,多态,封装 3.什么是方法?

十分钟的Python代码知识点总结

#-- 寻求帮助:dir(obj) # 简单的列出对象obj所包含的方法名称,返回一个字符串列表help(obj.func) # 查询obj.func的具体介绍和用法 #-- 测试类型的三种方法,推荐第三种if type(L) == type([]):print("L is list")if type(L) == list:print("L is list")if isinstance(L, list):print("L is list") #-

第六篇:Python函数进阶篇

在了解完了 Python函数基础篇之后,本篇的存在其实是为了整合知识,由于该篇的知识是否杂乱,故大家可以通过点开点连接直接进入其详细介绍,该篇主要大致的介绍一下几个知识点:  一.Python的迭代器和生成器 二.Python的内置函数 三.Python的open函数之文件处理 四.Python的递归函数 五.Python的高阶函数 六.Python的装饰器 一.Python的迭代器和生成器: 本篇我们介绍可迭代对象和迭代器对象--包括两者的定义及区别.为什么要有迭代器对象,其的用法是怎么样的