字段解释: product_no:用户手机号; lac_id:用户所在基站; start_time:用户在此基站的开始时间; staytime:用户在此基站的逗留时间。
product_no lac_id moment start_time user_id county_id staytime city_id 13429100031 22554 8 2013-03-11 08:55:19.151754088 571 571 282 571 13429100082 22540 8 2013-03-11 08:58:20.152622488 571 571 270 571 13429100082 22691 8 2013-03-11 08:56:37.149593624 571 571 103 571 13429100087 22705 8 2013-03-11 08:56:51.139539816 571 571 220 571 13429100087 22540 8 2013-03-11 08:55:45.150276800 571 571 66 571 13429100082 22540 8 2013-03-11 08:55:38.140225200 571 571 133 571 13429100140 26642 9 2013-03-11 09:02:19.151754088 571 571 18 571 13429100082 22691 8 2013-03-11 08:57:32.151754088 571 571 287 571 13429100189 22558 8 2013-03-11 08:56:24.139539816 571 571 48 571 13429100349 22503 8 2013-03-11 08:54:30.152622440 571 571 211 571
需求描述: 根据 lac_id 和 start_time 知道用户当时的位置,根据 staytime 知道用户各个基站的逗留时长。根据轨迹合并连续基站的 staytime。最终得到每一个用户按时间排序在每一个基站驻留时长。
期望输出:
13429100082 22540 8 2013-03-11 08:58:20.152622488 571 571 270 571 13429100082 22691 8 2013-03-11 08:56:37.149593624 571 571 390 571 13429100082 22540 8 2013-03-11 08:55:38.140225200 571 571 133 571 13429100087 22705 8 2013-03-11 08:56:51.139539816 571 571 220 571 13429100087 22540 8 2013-03-11 08:55:45.150276800 571 571 66 571
问题分析:针对每个product_no按照start_time进行排序(本例降序),如果相邻两项的lac_id相同,则将staytime进行相加保存到后一项中,并将前一项移除。
完整代码v1:此版本只启用了Map阶段。map()函数:将每行内容解析成自定义的RecordWritable对象并添加到List集合中,然后对List集合进行排序。clearup()函数:将product_no和lac_id相同的相邻两项中的staytime进行相加。
缺点:将全部数据添加到List集合,对于大数据量无法满足要求。
package demo0902; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class Demo090203 { final static String INPUT_PATH = "hdfs://10.16.17.182:9000/test/in/0902/"; final static String OUT_PATH = "hdfs://10.16.17.182:9000/test/out/0902/06"; public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration); job.setJarByClass(Demo090203.class); //指定map job.setMapperClass(Demo090201Mapper.class); job.setMapOutputKeyClass(RecordWritable.class); job.setMapOutputValueClass(NullWritable.class); job.setOutputKeyClass(RecordWritable.class); job.setOutputValueClass(NullWritable.class); FileInputFormat.setInputPaths(job, new Path(INPUT_PATH)); FileOutputFormat.setOutputPath(job, new Path(OUT_PATH)); job.waitForCompletion(true); } //map public static class Demo090201Mapper extends Mapper<LongWritable, Text, RecordWritable, NullWritable>{ //存储一条记录 ArrayList<RecordWritable> list = new ArrayList<RecordWritable>(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] splited = value.toString().split("\t"); //将一行内容组装成一条记录 RecordWritable record = new RecordWritable(); record.product_no=splited[0]; record.lac_id=splited[1]; record.moment=Integer.parseInt(splited[2]); record.start_time=splited[3]; record.user_id=splited[4]; record.county_id=splited[5]; record.staytime=Integer.parseInt(splited[6]); record.city_id=splited[7]; list.add(record); //对List中数据进行排序(自定义比较器) Collections.sort(list, new Comparator<RecordWritable>() { @Override public int compare(RecordWritable r1, RecordWritable r2) { //调用RecordWritable的compareTo()方法 return (r1.compareTo(r2)); } }); } @Override protected void cleanup(Context context) throws IOException, InterruptedException { for(RecordWritable r : list){ System.out.println(r.toString()); } for(int i=0; i<list.size() ;i++){ if(i != list.size()-1){ //取出相邻的两个RecordWritable RecordWritable record_pre = list.get(i); RecordWritable record_next = list.get(i+1); //只有手机号和基站号都相等的情况下,才将 staytime 相加 if(record_pre.product_no.equals(record_next.product_no) && record_pre.lac_id.equals(record_next.lac_id)){ //将相加后的staytime赋予后一条记录 record_next.staytime += record_pre.staytime; //移除前一条记录 list.remove(record_pre); } } } for(RecordWritable record : list){ context.write(record, NullWritable.get()); } } } //自定义的序列化类 public static class RecordWritable implements WritableComparable<RecordWritable>{ String product_no; String lac_id; int moment; String start_time; String user_id; String county_id; int staytime; String city_id; @Override public int compareTo(RecordWritable o) { // 先按手机号排序 Asc int value = this.product_no.compareTo(o.product_no); if(value==0) // 再按时间进行排序 Desc return o.start_time.compareTo(this.start_time); return value; } @Override public void write(DataOutput out) throws IOException { out.writeUTF(product_no); out.writeUTF(lac_id); out.writeInt(moment); out.writeUTF(start_time); out.writeUTF(user_id); out.writeUTF(county_id); out.writeInt(staytime); out.writeUTF(city_id); } @Override public void readFields(DataInput in) throws IOException { product_no=in.readUTF(); lac_id=in.readUTF(); moment=in.readInt(); start_time=in.readUTF(); user_id=in.readUTF(); county_id=in.readUTF(); staytime=in.readInt(); city_id=in.readUTF(); } @Override public String toString() { return this.product_no+" "+this.lac_id+" "+this.moment+" "+this.start_time+" "+user_id+" "+county_id+" "+ staytime+" "+city_id; } } }
完整代码v2:此版本Map阶段以product_no为key,每行内容为value进行输出。Reduce阶段和上一个版本的Map阶段功能类似。
优点:相比于v1,此版本优化在于每次只处理一个product_no相关的数据,减缓数据量带来的压力。
package demo0902; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class Demo090204 { final static String INPUT_PATH = "hdfs://10.16.17.182:9000/test/in/0902/"; final static String OUT_PATH = "hdfs://10.16.17.182:9000/test/out/0902/02"; public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration); job.setJarByClass(Demo090203.class); job.setMapperClass(Demo090201Mapper.class); job.setReducerClass(Demo090201Reducer.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(RecordWritable.class); job.setOutputValueClass(NullWritable.class); FileInputFormat.setInputPaths(job, new Path(INPUT_PATH)); FileOutputFormat.setOutputPath(job, new Path(OUT_PATH)); job.waitForCompletion(true); } //map public static class Demo090201Mapper extends Mapper<LongWritable, Text, Text, Text>{ @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] splited = value.toString().split("\t"); context.write(new Text(splited[0]), new Text(value)); } } //reduce public static class Demo090201Reducer extends Reducer<Text, Text, RecordWritable, NullWritable>{ @Override protected void reduce(Text key, Iterable<Text> v2s, Context context) throws IOException, InterruptedException { ArrayList<RecordWritable> list = new ArrayList<RecordWritable>(); for(Text text : v2s){ String[] splited = text.toString().split("\t"); RecordWritable record = new RecordWritable(); record.product_no=splited[0]; record.lac_id=splited[1]; record.moment=Integer.parseInt(splited[2]); record.start_time=splited[3]; record.user_id=splited[4]; record.county_id=splited[5]; record.staytime=Integer.parseInt(splited[6]); record.city_id=splited[7]; list.add(record); } //对List中数据进行排序(自定义比较器) Collections.sort(list, new Comparator<RecordWritable>() { @Override public int compare(RecordWritable r1, RecordWritable r2) { //调用RecordWritable的compareTo()方法 return (r1.compareTo(r2)); } }); for(int i=0; i<list.size() ;i++){ //滤过最后一条记录 if(i != list.size()-1){ //取出相邻的两个RecordWritable RecordWritable record_pre = list.get(i); RecordWritable record_next = list.get(i+1); if(record_pre.lac_id.equals(record_next.lac_id)){ //将相加后的staytime赋予后一条记录 record_next.staytime += record_pre.staytime; //移除前一条记录 list.remove(record_pre); } } } for(RecordWritable record : list){ context.write(record, NullWritable.get()); } } } //自定义的序列化类 public static class RecordWritable implements WritableComparable<RecordWritable>{ String product_no; String lac_id; int moment; String start_time; String user_id; String county_id; int staytime; String city_id; @Override public int compareTo(RecordWritable o) { // 先按手机号排序 Asc int value = this.product_no.compareTo(o.product_no); if(value==0) // 再按时间进行排序 Desc return o.start_time.compareTo(this.start_time); return value; } @Override public void write(DataOutput out) throws IOException { out.writeUTF(product_no); out.writeUTF(lac_id); out.writeInt(moment); out.writeUTF(start_time); out.writeUTF(user_id); out.writeUTF(county_id); out.writeInt(staytime); out.writeUTF(city_id); } @Override public void readFields(DataInput in) throws IOException { product_no=in.readUTF(); lac_id=in.readUTF(); moment=in.readInt(); start_time=in.readUTF(); user_id=in.readUTF(); county_id=in.readUTF(); staytime=in.readInt(); city_id=in.readUTF(); } @Override public String toString() { return this.product_no+" "+this.lac_id+" "+this.moment+" "+this.start_time+" "+user_id+" "+county_id+" "+ staytime+" "+city_id; } } }
时间: 2024-10-18 02:25:15