LTE学习之路(12)——PDCCH(续)

12.1 前言

  PDCCH提供的主要功能之一就是传输物理层资源分配指示,并且在每个子帧上,PDCCH指示频域资源分配。

  频域资源(一组资源块)分配信令设计的主要挑战是在灵活性和信令开销之间找到一个好的这种方案。一个可行的方法是发送组合的资源分配消息给所有UE,但有可能被拒绝,这是因为可靠到达所有的UE需要很高的功率,包括小区边缘的UE。

  LTE资源分配有3中类型:type0、type1和type2,具体使用哪种资源分配类型取决于所选的DCI format以及DCI内相关bit的配置。(有关DCI的介绍,请阅读:LTE学习之路(11)中的第2部分PDCCH之DCI)

表1:DCI format与下行资源分配类型的对应关系

12.2 REG介绍

  用bitmap(位图)指示分配给所调度UE的RBG(Resource Block Groups,资源块组),其中资源块组是一组连续的PRB。RBG的大小P是关于系统带宽的函数,如下表所示。

表2:type0资源分配的RBG大小

  例如:以下行系统带宽 = 50 RB为例,其P值为3,RBG的总数为17,前16个RBG各包含3个PRB,最后一个RBG只包含2个PRB。

12.3 下行资源分配类型0(type 0)

  在type0中,DCI format 1/2/2A/2B/2C通过一个bitmap来指示分配给UE的RBG。bitmap共包含比特,每比特对应1个RBG,最高位表示RBG 0,最低位表示RBG -1,以

此类推。如果某个RBG分配给了某个UE,则bitmap中对应比特置为1;否则置为0.

  举例说明如下:

下行链路系统带宽为 PRB的RBG总数由公式给出。图1给出了=25,=13,P=2的情况。从而bitmap共包含13bit来指示调度结果。

图1

  假设分配给某个UE的资源的bitmap为:1001110100010,则该UE被分配了RBG 0、RBG 3、RBG 4、RBG5、RBG 7、RBG 11

小结:

  从上面的例子可以看出:1)type0支持频域上的非连续RB分配;2)调度的粒度较粗,调度的最小单位是RBG,对于较大的带宽而言,无法按照单个RB来分配资源。

12.4 下行资源分配类型1(type 1)

   Type1是将所有的PRB分成P个RBG子集(subset),每个RBG子集p)包含从RBG p开始,间隔为P的所有RBG。

注意:分配给UE的VRB资源必须是来自于同一个RBG子集(type1分配的资源是VRB而不是PRB,这时与type0的区别之一)。

DCI format 1/2/2A/2B/2C通过3个域来指示分配给UE的VRB。

    第一个域包含个比特,用于指定所选的RBG子集,即p的值;

    第二个域包含1个比特(shift bit),用于指定子集内的资源是否偏移,1表示偏移,0表示不偏移;

    第三个域包含一个bitmap,bitmap的每一比特对应所选RBG子集中的一个VRB,最高位表示子集中的第一个VRB,最低位表示子集中的最后一个VRB,以此类推。如果某个VRB分配给了某个UE,则bitmap中对应比特置为1,否则置为0。bitmap的大小,即包含的比特数计算如下:

公式(1)

说明:

    一个选定的RBG子集中的VRB起始于该子集中最小的VRB号+偏移量,并对应bitmap中的最高位。

该偏移量以VRB的数量表示,并且是发生在选定的RBG子集内的偏移。

如果DCI的资源块分配信息中的第二个域为0,则RBG子集p的偏移;如果DCI的资源块分配信息中的第二个域为1,则RBG子集p的偏移,且bitmap中最低位比特调整为对应RBG子集中的最后一个VRB。

  为RBG子集p包含的VRB数目,计算公式如下:

                                                                                                               公式(2)

  对于RBG子集p而言,其bitmap中的每一bit ii=0,1,…..,)对应的VRB可通过如下公式计算:

公式(3)

举例说明(系统带宽为25RB):

1)由于系统带宽为25RB ,则P=2(即有两个子集):子集0(从RBG 0开始)和子集1(从RBG 1开始);

表3:type1中的子集(=25RB)

2),即第一个域使用1比特指定所选的RBG子集;

3)第二个域使用1比特指定RBG子集中的资源是否偏移;

4)bitmap包含的比特数,即bitmap只能对应11个VRB;

5)每个RBG子集p包含的VRB数为:

从而,可以看出bitmap不足以表示每个子集中包含的所有VRB。

6)接下来,详细介绍第二个域,即shift bit对bitmap所表示的VRB的影响。

    如果是shift bit=0,RBG子集p偏移

    如果是shift bit=1,RBG子集p偏移为:

从之前的分析可以看出,每个子集包含哪些RBG是确定的,也就是说,包含哪些VRB也是确定的。如图2所示:

图2

  当shift bit=0时,根据公式(3)可知bitmap(对于25RB的系统带宽,龚11bit)每一个比特对应哪个VRB。 结果如下:

  从上图可以看出,如果shift bit = 0(不发生偏移),每个子集的bitmap对应的VRB,是从图8给定的VRB集合中的第一个VRB开始(对应子集0,起始VRB为VRB0;对应子集1,起始VRB为VRB2),顺序选取11个VRB。

  当shift bit=1时,根据公式(3)可知bitmap(对于25RB的系统带宽,龚11bit)每一个比特对应哪个VRB。结果如下:

  从上图可以看出,如果shift bit = 1(发生偏移),每个子集的bitmap对应的VRB,是从图8给定的VRB集合中的第一个VRB,加上偏移量开始(对应子集0,偏移量 ,即在图2给定的p= 0的VRB集合中,往前移2个,得到起始VRB为VRB4;对应子集1,偏移量 ,即在图8给定的p = 1的VRB集合中,往前移1个,得到起始VRB为VRB3),顺序选取11个VRB。

小结:

  从上面的例子可以看出:1)资源分配类型1支持频域上的非连续RB分配;2)和资源分配类型0相比,资源分配类型1支持粒度为1 RB的分配;3)资源分配类型0和资源分配类型1使用相同的bit数来表示资源的分配;4)bitmap的比特数实际上比RBG子集中的VRB数要少,通过shift bit,bitmap才能覆盖所有的VRB。

12.5 下行资源分配类型2(type 2)

    在type2中,分配给UE的资源为一段连续的VRB,其VRB可以是集中式(localized),也可以是分布式的(distributed)。

对于DCI format 1A/1B/1D而言,有一个bit的标志位来表示使用集中式的VRB还是分布式的VRB,该bit=0时表示使用集中式,该bit=1表示使用分布式,而在DCI format 1C中,总是使用分布式的VRB。

对于集中式VRB分配而言,分配给一个UE的资源可以从1个VRB到整个系统带宽的所有VRB。

如果DCI format 1A使用分布式VRB分配方式,且其DCI的CRC由P-RNTI、RA-RNTI或SI-RNTI加扰,则分配给对应UE的VRB数可以从1个到个。的计算如下:(协议36.211的6.2.3.2)

未完待续。。。。

参考博客:

http://blog.sina.com.cn/s/blog_927cff010101a042.html

时间: 2024-10-11 00:11:43

LTE学习之路(12)——PDCCH(续)的相关文章

LTE学习之路(4)——概述(续)

[EPS承载] 基础知识——TFT 数据包过滤器:通常是在数据包传送过程中允许或阻止它们的通过.如果要完成数据包过滤,就要设置好规则来指定哪些类型的数据包被允许通过和哪些类型的数据包将会被阻止. TFT(Traffic Flow Template):是关联到EPS承载上的一个数据包过滤器的集合,分为上行过滤模版UL TFT(UpLink TFT)和下行过滤模版DL TFT(DownLink TFT). UL TFT是一组上行数据包过滤器,DL TFT是一组下行数据包过滤器.每一个专用承载都关联一

LTE学习之路(3)——概述(续)

[LTE协议栈的两个面] 用户面协议栈——负责用户数据传输 控制面协议栈——负责系统信令传输 用户面主要功能:头压缩.加密.调度.ARQ/HARQ 控制面主要功能: PDCH层完成加密与完整性保护: RLC和MAC层功能与用户面中的功能一致: RRC完成广播.寻呼.RRC连接管理.资源控制.移动性管理.UE测量报告与控制: NAS层完成核心网承载管理.鉴权及安全控制 [用户平面与控制平面协议栈中共有的LTE层2] LTE层2含有三种协议: PDCP(Packet Data Convergence

LTE学习之路(5)——物理层

帧结构 LTE支持的两种无线帧 类型1:应用于FDD 类型2:应用于TDD FDD类型无线帧结构 FDD类型无线帧长为10ms,如上图所示.每帧分为10个相同大小的子帧,每个子帧又分为两个相同大小的时隙,即每个FDD无线帧帧含有20个相同大小的时隙,每个时隙为0.5ms.普通CP配置下,一个时隙包含7个连续的OFDM符号(Symbol). TDD类型无线帧结构 在TDD帧结构中,一个长度为10ms的无线帧由2个长度为5ms的半帧构成,每个半帧由5个长度为1ms的子帧构成,其中包括4个普通子帧和1

LTE学习之路(7)——LTE系统消息

1 系统消息包含: 主信息块(Master Information Block,MIB) 多个系统信息块(System Information Blocks,SIBs) 2 MIB 承载于BCCH——>BCH——>PBCH上 包括有限个用以读取其他小区信息的最重要.最常用的传输参数(如:系统带宽.系统帧号.PHICH配置信息) 时域:紧邻同步信道,以10ms为周期重传4次 频域:位于系统带宽中央的72个子载波(1.08MHz) 3  SIBs 除MIB外的系统信息,包括SIB1~SIB12:

LTE学习之路(8)——信令流程

1 在LTE中,需要识别3个主要的同步需求 符号和帧定时的捕获,通过它来确定正确的符号起始位置(如设置DFT窗位置): 载波频率同步,需要它来减少或消除频率误差的影响(注:频率误差是由本地振荡器在发射端和接收端间的频率不匹配和UE移动导致的多普勒偏移造成的): 采样时钟的同步 2 两个物理信号 主同步信号(PSS,Primary Synchronization Signal) 和辅同步信号(SSS,Secondary Synchronization Signal) 注:对于这两个信号的检测,不仅

LTE学习之路(9)—— 3GPP TS协议系列总结

规范编号 规范名称 内容 更新时间 射频系列规范 TS 36.101 UE无线发送和接收 描述FDD和TDD E-UTRA UE的最小射频(RF)特性 08-Oct-2010 TS 36.104 BS无线发送与接收 描述E-UTRA BS在成对频谱和非成对频谱的最小RF特性 30-Sep-2010 TS 36.106 FDD直放站无线发送与接收 描述FDD直放站的射频要求和基本测试条件 30-Sep-2010 TS 36.113 BS与直放站的电磁兼容 包含对E-UTRA基站.直放站和补充设备的

LTE学习之路(6)——RRC

1 RRC协议功能 为NAS层提供连接管理,消息传递等服务: 对接入网的底层协议实体提供参数配置的功能: 负责UE移动性管理相关的测量.控制等功能 2 RRC状态 RRC_IDLE PLMN选择: NAS配置的DRX过程: 系统信息广播和寻呼: 邻小区测量: 小区重选的移动性: UE获取一个TA区内的唯一标识: eNB内无终端上下文 RRC_CONNECTION 网络侧有UE的上下文信息: 网络侧知道UE所处小区: 网络和终端可以传输数据: 网络控制终端的移动性: 邻小区测量: 存在RRC连接:

LTE学习之路(1)——移动通信技术发展历程

题记: 随着信息技术的发展,用户需求的日渐增多,移动通信技术已称为当代通信领域的发展潜力最大,市场前景最广的研究热点.目前,移动通信技术已经历了几代的发展. 一.第一代移动通信技术(1G)--模拟移动通信 起源于20世纪80年代,主要采用的是模拟调制技术与频分多址接入(FDMA)技术,这种技术的主要缺点是频谱利用率低,信令干扰话音业务.1G主要代表有:美国的先进的移动电话系统(AMPS).英国的全球接入通信系统(TACS)和日本的电报电话系统(NMT).1G移动通信基于模拟传输技术,其特点是业务

LTE学习之路(2)

[LTE的设计目标] 带宽灵活配置:支持1.4MHz, 3MHz, 5MHz, 10Mhz, 15Mhz, 20MHz 峰值速率(20MHz带宽):下行100Mbps,上行50Mbps 控制面延时小于100ms,用户面延时小于5ms 能为速度>350km/h的用户提供100kbps的接入服务 支持增强型MBMS(E-MBMS) 取消CS域,CS域业务在PS域实现,如VoIP 系统结构简单化,低成本建网 [名词介绍] 3GPP(3th Generation Partnership Project)