使用IDEA开发及测试Spark的环境搭建及简单测试

一、安装JDK(具体安装省略)

二、安装Scala(具体安装省略)

三、安装IDEA

  1、打开后会看到如下,然后点击OK

 2、点击Next:Default plugins,进入以下页面:

  3、点击Scala的Install安装(确保联网),等待完成后,出现

 4、点击Create New Project进入主页面:打开后新建一个名为WordCount的工程(这个应该都知道吧File-->New-->Scala Project),建立完成后,再点击File-->Project Structure-->Libraries,然后点击+号,找到自己的spark包(spark-assembly-1.0.0-hadoop1.0.4.jar,然后点击OK)(这一步很重要)

  5、此时所有的包依赖都导入成功,然后新建一个Scala类,即可开发Spark

四、写程序

  下面给出史上最详细的程序:

  1、如果想要在本地上搞Spark的话:

 1 package com.df.spark
 2 import org.apache.spark.SparkConf
 3 import org.apache.spark.SparkContext
 4 import org.apache.spark.SparkContext._
 5 import org.apache.spark.rdd.RDD
 6 /**
 7  * 使用Scala开发集群运行的Spark WordCount程序
 8  * @author liuzhongfeng
 9  */
10 object WordCount_Cluster {
11   def main(args: Array[String]){
12     /**
13      * 第一步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息
14      * 例如说通过setMaster来设置程序要链接的Spark集群的Master的URL,如果设置为local,
15      * 则代表Spark程序在本地运行,特别适合机器配置条件差的初学者。
16      */
17     val conf=new SparkConf()//创建SparkConf对象
18     conf.setAppName("My First Spark App!")//设置应用程序的名称,在程序运行的监控界面可以看到名称
19     conf.setMaster("spark://cMaster-spark:7077")//程序此时运行在Spark集群
20
21     /**
22      * 第二步:创建SparkContext对象,
23      * SparkContext是Spark程序所有功能的唯一入口,无论是采用Scala、Java、Python、R等都必须有一个SparkContext
24      * SparkContext的核心作用:初始化Spark应用程序运行所需要的核心组件,包括DAGScheduler、TaskScheduler、SchedulerBacken
25      * 同时还会负责Spark程序往Master注册程序等
26      * SparkContext是整个Spark应用程序中至关重要的一个对象
27      */
28     val sc=new SparkContext(conf)//通过创建SparkContext对象,通过传入SparkConf实例来定制Spark运行的具体参数和配置信息
29
30     /**
31      * 第三步:根据具体的数据来源(HDFS、HBase、Local FS、S3)通过SparkContext来创建RDD
32      * RDD的创建基本有三种方式:根据外部的数据来源(例如HDFS)、根据Scala集合、由其他的RDD操作
33      * 数据会被RDD划分称为一些列的Partitions,分配到每个Partition的数据属于一个Task的处理范畴
34      */
35    // val lines: RDD[String]=sc.textFile("H://下载//linux软件包//linux-spark的文件//spark//spark-1.0.0-bin-hadoop1//README.md", 1)
36     //读取本地文件并设置为一个Partition
37     //val lines=sc.textFile("H://下载//linux软件包//linux-spark的文件//spark//spark-1.0.0-bin-hadoop1//README.md", 1)
38     val lines=sc.textFile("/in", 1)
39     /**
40      * 第四步:对初始的RDD进行Transformation级别的处理,例如map、filter等高阶函数的编程,来进行具体的数据计算
41      * 第4.1步:将每一行的字符串拆分成单个的单词
42      */
43     val words=lines.flatMap { line => line.split(" ")}//对每一行的字符串进行单词切分,并把所有行的切分结果通过flat合并成一个大的单词集合
44     /**
45      * 第四步:对初始的RDD进行Transformation级别的处理,例如map、filter等高阶函数的编程,来进行具体的数据计算
46      * 第4.2步:在单词切分的基础上,对每个单词实例的计数为1,也就是word=>(word,1)
47      */
48     val pairs=words.map { word => (word,1) }
49     /**
50      * 第四步:对初始的RDD进行Transformation级别的处理,例如map、filter等高阶函数的编程,来进行具体的数据计算
51      * 第4.3步:在每个单词实例计数为1的基础之上统计每个单词在文件中出现的总次数
52      */
53     val wordCounts=pairs.reduceByKey(_+_)//对相同的Key,进行Value的累计(包括Local和Reducer级别同时Reduce)
54     wordCounts.collect.foreach(wordNumberPair=>println(wordNumberPair._1+" : "+wordNumberPair._2))
55     sc.stop()
56   }
57 }

  通过点击右键,选择Run As-->Scala Application,然后出现运行结果:

16/01/27 16:55:27 INFO SecurityManager: Using Spark‘s default log4j profile: org/apache/spark/log4j-defaults.properties
16/01/27 16:55:27 INFO SecurityManager: Changing view acls to: liuzhongfeng
16/01/27 16:55:27 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(liuzhongfeng)
16/01/27 16:55:28 INFO Slf4jLogger: Slf4jLogger started
16/01/27 16:55:28 INFO Remoting: Starting remoting
16/01/27 16:55:28 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://spark@Frank:38059]
16/01/27 16:55:28 INFO Remoting: Remoting now listens on addresses: [akka.tcp://spark@Frank:38059]
16/01/27 16:55:28 INFO SparkEnv: Registering MapOutputTracker
16/01/27 16:55:28 INFO SparkEnv: Registering BlockManagerMaster
16/01/27 16:55:28 INFO DiskBlockManager: Created local directory at C:\Users\LIUZHO~1\AppData\Local\Temp\spark-local-20160127165528-81e4
16/01/27 16:55:28 INFO MemoryStore: MemoryStore started with capacity 1068.9 MB.
16/01/27 16:55:28 INFO ConnectionManager: Bound socket to port 38062 with id = ConnectionManagerId(Frank,38062)
16/01/27 16:55:28 INFO BlockManagerMaster: Trying to register BlockManager
16/01/27 16:55:28 INFO BlockManagerInfo: Registering block manager Frank:38062 with 1068.9 MB RAM
16/01/27 16:55:28 INFO BlockManagerMaster: Registered BlockManager
16/01/27 16:55:28 INFO HttpServer: Starting HTTP Server
16/01/27 16:55:28 INFO HttpBroadcast: Broadcast server started at http://192.168.1.107:38063
16/01/27 16:55:28 INFO HttpFileServer: HTTP File server directory is C:\Users\LIUZHO~1\AppData\Local\Temp\spark-59ecde39-31f6-4f84-ac49-e86194415dec
16/01/27 16:55:28 INFO HttpServer: Starting HTTP Server
16/01/27 16:55:28 INFO SparkUI: Started SparkUI at http://Frank:4040
16/01/27 16:55:29 INFO MemoryStore: ensureFreeSpace(32816) called with curMem=0, maxMem=1120822886
16/01/27 16:55:29 INFO MemoryStore: Block broadcast_0 stored as values to memory (estimated size 32.0 KB, free 1068.9 MB)
16/01/27 16:55:29 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/01/27 16:55:29 WARN LoadSnappy: Snappy native library not loaded
16/01/27 16:55:29 INFO FileInputFormat: Total input paths to process : 1
16/01/27 16:55:29 INFO SparkContext: Starting job: foreach at WordCount.scala:53
16/01/27 16:55:29 INFO DAGScheduler: Registering RDD 4 (reduceByKey at WordCount.scala:52)
16/01/27 16:55:29 INFO DAGScheduler: Got job 0 (foreach at WordCount.scala:53) with 1 output partitions (allowLocal=false)
16/01/27 16:55:29 INFO DAGScheduler: Final stage: Stage 0(foreach at WordCount.scala:53)
16/01/27 16:55:29 INFO DAGScheduler: Parents of final stage: List(Stage 1)
16/01/27 16:55:29 INFO DAGScheduler: Missing parents: List(Stage 1)
16/01/27 16:55:29 INFO DAGScheduler: Submitting Stage 1 (MapPartitionsRDD[4] at reduceByKey at WordCount.scala:52), which has no missing parents
16/01/27 16:55:29 INFO DAGScheduler: Submitting 1 missing tasks from Stage 1 (MapPartitionsRDD[4] at reduceByKey at WordCount.scala:52)
16/01/27 16:55:29 INFO TaskSchedulerImpl: Adding task set 1.0 with 1 tasks
16/01/27 16:55:29 INFO TaskSetManager: Starting task 1.0:0 as TID 0 on executor localhost: localhost (PROCESS_LOCAL)
16/01/27 16:55:29 INFO TaskSetManager: Serialized task 1.0:0 as 2172 bytes in 2 ms
16/01/27 16:55:29 INFO Executor: Running task ID 0
16/01/27 16:55:29 INFO BlockManager: Found block broadcast_0 locally
16/01/27 16:55:29 INFO HadoopRDD: Input split: file:/H:/下载/linux软件包/linux-spark的文件/spark/spark-1.0.0-bin-hadoop1/README.md:0+4221
16/01/27 16:55:29 INFO Executor: Serialized size of result for 0 is 775
16/01/27 16:55:29 INFO Executor: Sending result for 0 directly to driver
16/01/27 16:55:29 INFO Executor: Finished task ID 0
16/01/27 16:55:29 INFO TaskSetManager: Finished TID 0 in 231 ms on localhost (progress: 1/1)
16/01/27 16:55:29 INFO DAGScheduler: Completed ShuffleMapTask(1, 0)
16/01/27 16:55:29 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool
16/01/27 16:55:29 INFO DAGScheduler: Stage 1 (reduceByKey at WordCount.scala:52) finished in 0.240 s
16/01/27 16:55:29 INFO DAGScheduler: looking for newly runnable stages
16/01/27 16:55:29 INFO DAGScheduler: running: Set()
16/01/27 16:55:29 INFO DAGScheduler: waiting: Set(Stage 0)
16/01/27 16:55:29 INFO DAGScheduler: failed: Set()
16/01/27 16:55:29 INFO DAGScheduler: Missing parents for Stage 0: List()
16/01/27 16:55:29 INFO DAGScheduler: Submitting Stage 0 (MapPartitionsRDD[6] at reduceByKey at WordCount.scala:52), which is now runnable
16/01/27 16:55:29 INFO DAGScheduler: Submitting 1 missing tasks from Stage 0 (MapPartitionsRDD[6] at reduceByKey at WordCount.scala:52)
16/01/27 16:55:29 INFO TaskSchedulerImpl: Adding task set 0.0 with 1 tasks
16/01/27 16:55:29 INFO TaskSetManager: Starting task 0.0:0 as TID 1 on executor localhost: localhost (PROCESS_LOCAL)
16/01/27 16:55:29 INFO TaskSetManager: Serialized task 0.0:0 as 2003 bytes in 1 ms
16/01/27 16:55:29 INFO Executor: Running task ID 1
16/01/27 16:55:29 INFO BlockManager: Found block broadcast_0 locally
16/01/27 16:55:29 INFO BlockFetcherIterator$BasicBlockFetcherIterator: maxBytesInFlight: 50331648, targetRequestSize: 10066329
16/01/27 16:55:29 INFO BlockFetcherIterator$BasicBlockFetcherIterator: Getting 1 non-empty blocks out of 1 blocks
16/01/27 16:55:29 INFO BlockFetcherIterator$BasicBlockFetcherIterator: Started 0 remote fetches in 6 ms
For : 5
Programs : 1
gladly : 1
Because : 1
The : 1
agree : 1
cluster. : 1
webpage : 1
its : 1
under : 2
legal : 1
1.x, : 1
have : 2
Try : 1
MRv1, : 1
add : 2
through : 1
several : 1
This : 2
Whether : 1
"yarn-cluster" : 1
% : 2
storage : 1
To : 2
setting : 1
any : 2
Once : 1
application : 1
explicitly, : 1
use: : 1
prefer : 1
SparkPi : 2
version : 3
file : 1
documentation, : 1
Along : 1
the : 28
entry : 1
author. : 1
are : 2
systems. : 1
params : 1
not : 2
different : 1
refer : 1
Interactive : 2
given. : 1
if : 5
file‘s : 1
build : 3
when : 2
be : 2
Tests : 1
Apache : 6
./bin/run-example : 2
programs, : 1
including : 1
<http://spark.apache.org/documentation.html>. : 1
Spark. : 2
2.0.5-alpha : 1
package. : 1
1000).count() : 1
project‘s : 3
Versions : 1
HDFS : 1
license : 3
email, : 1
<artifactId>hadoop-client</artifactId> : 1
>>> : 1
"org.apache.hadoop" : 1
<version>1.2.1</version> : 1
programming : 1
Testing : 1
run: : 1
environment : 2
pull : 3
1000: : 2
v2 : 1
<groupId>org.apache.hadoop</groupId> : 1
Please : 1
is : 6
run : 7
URL, : 1
SPARK_HADOOP_VERSION=2.2.0 : 1
threads. : 1
same : 1
MASTER=spark://host:7077 : 1
on : 4
built : 2
against : 1
tests : 1
examples : 2
at : 1
usage : 1
using : 3
Maven, : 1
talk : 1
submitting : 1
Shell : 2
class : 2
adding : 1
abbreviated : 1
directory. : 1
README : 1
overview : 1
dependencies. : 1
`examples` : 2
example: : 1
## : 9
N : 1
set : 2
use : 3
Hadoop-supported : 1
running : 1
find : 1
via : 2
contains : 1
project : 3
SPARK_HADOOP_VERSION=2.0.5-alpha : 1
Pi : 1
need : 1
request, : 1
or : 5
</dependency> : 1
<class> : 1
uses : 1
"hadoop-client" : 2
Hadoop, : 1
(You : 1
requires : 1
Contributions : 1
SPARK_HADOOP_VERSION=1.2.1 : 1
Documentation : 1
of : 3
cluster : 1
using: : 1
accepted : 1
must : 1
"1.2.1" : 1
1.2.1 : 2
built, : 1
Hadoop : 11
means : 1
Spark : 12
this : 4
Python : 2
original : 2
YARN, : 3
2.1.X, : 1
pre-built : 1
[Configuration : 1
locally. : 1
./bin/pyspark : 1
A : 1
locally : 2
# : 6
sc.parallelize(1 : 1
only : 1
library : 1
Configuration : 1
basic : 1
MapReduce : 2
documentation : 1
first : 1
which : 2
following : 2
changed : 1
also : 4
Cloudera : 4
without : 1
should : 2
for : 1
"yarn-client" : 1
[params]`. : 1
`SPARK_YARN=true`: : 1
setup : 1
mesos:// : 1
<http://spark.apache.org/> : 1
GitHub : 1
requests : 1
latest : 1
your : 6
test : 1
MASTER : 1
example : 3
authority : 1
SPARK_YARN=true : 3
scala> : 1
guide](http://spark.apache.org/docs/latest/configuration.html) : 1
configure : 1
artifact : 1
can : 7
About : 1
you‘re : 1
instructions. : 1
do : 3
2.0.X, : 1
easiest : 1
no : 1
When : 1
how : 1
newer : 1
`./bin/run-example : 1
source : 2
copyrighted : 1
material : 2
Note : 1
2.10. : 1
by : 3
please : 1
Lightning-Fast : 1
spark:// : 1
so. : 1
Scala : 3
Alternatively, : 1
If : 1
Cluster : 1
variable : 1
submit : 1
an : 2
thread, : 1
them, : 1
2.2.X : 1
And : 1
application, : 1
return : 2
developing : 1
./bin/spark-shell : 1
`<dependencies>` : 1
warrant : 1
"local" : 1
start : 1
You : 4
<dependency> : 1
Spark](#building-spark). : 1
one : 2
help : 1
with : 8
print : 1
CDH : 4
2.2.X, : 1
$ : 5
SPARK_HADOOP_VERSION=2.0.0-mr1-cdh4.2.0 : 1
in : 4
Contributing : 1
downloaded : 1
versions : 4
online : 1
`libraryDependencies`: : 1
- : 1
section: : 1
4.2.0 : 2
comes : 1
[building : 1
Python, : 1
0.23.x, : 1
`SPARK_HADOOP_VERSION` : 1
Many : 1
other : 4
Running : 1
sbt/sbt : 5
building : 1
way : 1
SBT, : 1
Online : 1
change : 1
MRv2, : 1
contribution : 1
from : 1
Example : 1
POM : 1
open : 2
sc.parallelize(range(1000)).count() : 1
you : 8
runs. : 1
Building : 1
protocols : 1
that : 4
a : 5
their : 1
guide, : 1
name : 1
example, : 1
state : 2
work : 2
will : 1
instance: : 1
to : 19
v1 : 1
core : 1
 : 149
license. : 1
"local[N]" : 1
programs : 2
package.) : 1
shell: : 2
./sbt/sbt : 2
assembly : 6
specify : 1
and : 9
Computing : 1
command, : 2
SPARK_HADOOP_VERSION=2.0.0-cdh4.2.0 : 1
sample : 1
requests, : 1
16/01/27 16:55:29 INFO Executor: Serialized size of result for 1 is 825
16/01/27 16:55:29 INFO Executor: Sending result for 1 directly to driver
16/01/27 16:55:29 INFO Executor: Finished task ID 1
16/01/27 16:55:29 INFO DAGScheduler: Completed ResultTask(0, 0)
16/01/27 16:55:29 INFO DAGScheduler: Stage 0 (foreach at WordCount.scala:53) finished in 0.126 s
16/01/27 16:55:29 INFO TaskSetManager: Finished TID 1 in 123 ms on localhost (progress: 1/1)
16/01/27 16:55:29 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
16/01/27 16:55:29 INFO SparkContext: Job finished: foreach at WordCount.scala:53, took 0.521885349 s
16/01/27 16:55:29 INFO SparkUI: Stopped Spark web UI at http://Frank:4040
16/01/27 16:55:29 INFO DAGScheduler: Stopping DAGScheduler
16/01/27 16:55:31 INFO MapOutputTrackerMasterActor: MapOutputTrackerActor stopped!
16/01/27 16:55:31 INFO ConnectionManager: Selector thread was interrupted!
16/01/27 16:55:31 INFO ConnectionManager: ConnectionManager stopped
16/01/27 16:55:31 INFO MemoryStore: MemoryStore cleared
16/01/27 16:55:31 INFO BlockManager: BlockManager stopped
16/01/27 16:55:31 INFO BlockManagerMasterActor: Stopping BlockManagerMaster
16/01/27 16:55:31 INFO BlockManagerMaster: BlockManagerMaster stopped
16/01/27 16:55:31 INFO SparkContext: Successfully stopped SparkContext
16/01/27 16:55:31 INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon.
16/01/27 16:55:31 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports.

  2、如果想要在集群上搞Spark的话:

 1 package com.df.spark
 2 import org.apache.spark.SparkConf
 3 import org.apache.spark.SparkContext
 4 import org.apache.spark.SparkContext._
 5 import org.apache.spark.rdd.RDD
 6 /**
 7  * 使用Scala开发集群运行的Spark WordCount程序
 8  * @author liuzhongfeng
 9  */
10 object WordCount_Cluster {
11   def main(args: Array[String]){
12     /**
13      * 第一步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息
14      * 例如说通过setMaster来设置程序要链接的Spark集群的Master的URL,如果设置为local,
15      * 则代表Spark程序在本地运行,特别适合机器配置条件差的初学者。
16      */
17     val conf=new SparkConf()//创建SparkConf对象
18     conf.setAppName("My First Spark App!")//设置应用程序的名称,在程序运行的监控界面可以看到名称
19     conf.setMaster("spark://cMaster-spark:7077")//程序此时运行在Spark集群
20
21     /**
22      * 第二步:创建SparkContext对象,
23      * SparkContext是Spark程序所有功能的唯一入口,无论是采用Scala、Java、Python、R等都必须有一个SparkContext
24      * SparkContext的核心作用:初始化Spark应用程序运行所需要的核心组件,包括DAGScheduler、TaskScheduler、SchedulerBacken
25      * 同时还会负责Spark程序往Master注册程序等
26      * SparkContext是整个Spark应用程序中至关重要的一个对象
27      */
28     val sc=new SparkContext(conf)//通过创建SparkContext对象,通过传入SparkConf实例来定制Spark运行的具体参数和配置信息
29
30     /**
31      * 第三步:根据具体的数据来源(HDFS、HBase、Local FS、S3)通过SparkContext来创建RDD
32      * RDD的创建基本有三种方式:根据外部的数据来源(例如HDFS)、根据Scala集合、由其他的RDD操作
33      * 数据会被RDD划分称为一些列的Partitions,分配到每个Partition的数据属于一个Task的处理范畴
34      */
35
36     val lines=sc.textFile("/in", 1)//导入你的hdfs上的文件
37     /**
38      * 第四步:对初始的RDD进行Transformation级别的处理,例如map、filter等高阶函数的编程,来进行具体的数据计算
39      * 第4.1步:将每一行的字符串拆分成单个的单词
40      */
41     val words=lines.flatMap { line => line.split(" ")}//对每一行的字符串进行单词切分,并把所有行的切分结果通过flat合并成一个大的单词集合
42     /**
43      * 第四步:对初始的RDD进行Transformation级别的处理,例如map、filter等高阶函数的编程,来进行具体的数据计算
44      * 第4.2步:在单词切分的基础上,对每个单词实例的计数为1,也就是word=>(word,1)
45      */
46     val pairs=words.map { word => (word,1) }
47     /**
48      * 第四步:对初始的RDD进行Transformation级别的处理,例如map、filter等高阶函数的编程,来进行具体的数据计算
49      * 第4.3步:在每个单词实例计数为1的基础之上统计每个单词在文件中出现的总次数
50      */
51     val wordCounts=pairs.reduceByKey(_+_)//对相同的Key,进行Value的累计(包括Local和Reducer级别同时Reduce)
52     wordCounts.collect.foreach(wordNumberPair=>println(wordNumberPair._1+" : "+wordNumberPair._2))
53     sc.stop()
54   }
55 }

  (1)将你的程序打包到你的linux,运行Spark集群。具体操作为:File-->Project Structure-->Artifacts-->JAR-->From Moudle With Dependencies,注意此时要把和Spark与Scala相关的JAR去掉。

  (2)然后点击OK即可。

  注意:问为什么不能直接在IDEA中发到spark集群呢?

    1)、内存和cores的限制,默认值spark的driver会在提交spark的机器上,需要很强大的环境。

    2)、Driver要指挥workers工作,如果spark在生产环境下一定会通过写自动化shell脚本来提交程序的,如果与IDEA不在同一个网络下回出现任务丢失等问题。

    3)、安全性较差。

  (3)、通过打开spark后,执行

时间: 2024-10-14 17:43:42

使用IDEA开发及测试Spark的环境搭建及简单测试的相关文章

消息订阅发布系统Apache Kafka分布式集群环境搭建和简单测试

一.什么是kafka? kafka是LinkedIn开发并开源的一个分布式MQ系统,现在是Apache的一个孵化项目.在它的主页描述kafka为一个高吞吐量的分布式(能将消息分散到不同的节点上)MQ.Kafka仅仅由7000行Scala编写,据了解,Kafka每秒可以生产约25万消息(50 MB),每秒处理55万消息(110 MB) 二.kafka的官方网站在哪里? http://kafka.apache.org/ 三.在哪里下载?需要哪些组件的支持? kafka2.9.2在下面的地址可以下载:

Apache Spark源码走读之12 -- Hive on Spark运行环境搭建

欢迎转载,转载请注明出处,徽沪一郎. 楔子 Hive是基于Hadoop的开源数据仓库工具,提供了类似于SQL的HiveQL语言,使得上层的数据分析人员不用知道太多MapReduce的知识就能对存储于Hdfs中的海量数据进行分析.由于这一特性而收到广泛的欢迎. Hive的整体框架中有一个重要的模块是执行模块,这一部分是用Hadoop中MapReduce计算框架来实现,因而在处理速度上不是非常令人满意.由于Spark出色的处理速度,有人已经成功将HiveQL的执行利用Spark来运行,这就是已经非常

对不同型号开发板的认识及环境搭建

对不同型号开发板的认识及环境搭建心得 开发板(demoboard)是用来进行嵌入式系统开发的电路板,包括中央处理器.存储器.输入设备.输出设备.数据通路/总线和外部资源接口等一系列硬件组件.在一般的嵌入式系统开发过程中,硬件一般被分成两个平台,一个是开发平台(host),一个是目标平台(target)即开发板.在此描述的开发平台指的是使用计算机,通过传输的界面,例如串口(RS-232).USB.并口.或者网络(Ethernet)与目标平台连接. 开发板一般由嵌入式系统开发者根据开发需求自己订制,

[PhoneGap]开发环境搭建与简单应用

目前,随着Google的Android手机和苹果的iphone手机的逐渐普及,越来越多开发者加入到移动应用开发的大军当中.其中,Android应用是基于Java语言基础上进行开发的,而苹果公司的iphone则是基于C语言开发的.如果开发者编写的应用需要同时在不同的移动设备上运行的话,则必须要掌握多种开发语言.而为了进一步简化移动应用的编程,Nitobi公司推出了一套开源的移动应用解决方案PhoneGap(http://www.phonegap.com). PhoneGap是一款开源的手机应用开发

Eclipse+Java+OpenCV249环境搭建和代码测试

1.首先下载OpenCV2.4.9,下载的时候,选择windows版的.然后安装 2.其实安装的过程就是解压的过程,并没有什么安装向导之类的,安装完成后,我们最关心的是这个目录:opencv\build\java 如下图所示 3,建立项目   JavaOpenCv249 3.导入java包 4.设置项目的native库,即opencv_java246.dll所在的路径 运行下面代码: package com.gao; import org.opencv.core.CvType; import o

Linux驱动开发(1)之环境搭建小试牛刀

一.环境搭建 最简单的方法就是: 1.Windows下安装VMware 2.WMware下安装Ubuntu(本人装的ubuntu-10.04-desktop-i386(ubuntu发行版的名字.10.04是10年04月.desktop是发行的版本.i386是cpu的型号和类型)) 3.此时你的环境已经搭建好了,要多简单就多简单,是不是还没有做什么?怎么可能?这是因为Ubuntu已经帮我们做好了. 4.刚安装Ubuntu怎么配置屏幕分辨率呢?System-Preferences-Monitors

【Android进阶】Junit单元测试环境搭建以及简单实用

单元测试的目的 首先,Junit单元测试要实现的功能,就是用来测试写好的方法是否能够正确的执行,一般多用于对业务方法的测试. 单元测试的环境配置 1.在AndroidManifest清单文件的Application节点下,引入单元测试使用的库 2.在AndroidManifest清单文件与Application节点平行的节点中,添加instrumentation节点 下面是一个完整的配置的代码 <manifest xmlns:android="http://schemas.android.

PHP小菜的学习之路(一) PHP环境搭建和简单调试

前面提到,反省不是目的,目的是要改变自己. 最近自己在业余时间在研究微信公众平台开发,在成为开发者的时候,URL一直不知道该怎么写,百度云开发者平台也没有提供对应C#的服务器.下载了个PHP的照葫芦画瓢,连蒙带造的简单的做了一个小的Demo.对于里面语法什么自己完全不懂,果然是彻彻底底的PHP菜鸟.因为想做微信平台开发,而且自己也没有自己的服务器和域名,又不打算买一个,就只能用PHP了.这也坚定了我想业余时间,简单的学习一下PHP的决心. 也许有人看到这里会说,你丫C#搞了两年还是菜鸟,现在还想

vue环境搭建的简单总结

Vue环境搭建的简单总结 构成: Node.js环境  cnpm npm的淘宝镜像 Veu cli 手脚架构建工具 安装node.js环境 安装node.js方法步骤https://jingyan.baidu.com/article/b0b63dbfca599a4a483070a5.html: 安装cnpm 有些npm有些资源被屏蔽或者是国外资源的原因,经常会导致用npm安装依赖包的时候失败,所以需要npm的国内镜像---cnpm 在命令行中输入npminstall-gcnpm--registr