liblinear和libsvm区别

来源于知乎:

1. LibLinear是线性核,LibSVM可以扩展到非线性核(当也能用线性核,但同样在线性核条件下会比LibLinear慢很多)。
2. 多分类:LibLinear是one vs all策略,LibSVM是one vs one策略,后者的模型会大很多。
3. 模型的文件格式不兼容。

时间: 2024-10-03 16:16:20

liblinear和libsvm区别的相关文章

LIBSVM与LIBLINEAR

原文: http://orangeprince.info/2014/11/23/libsvm-liblinear-2/ http://orangeprince.info/2014/11/22/libsvm-liblinear-1/ LIBSVM与LIBLINEAR(一) 在过去的十几年里,支持向量机(Support Vector Machines)应该算得上是机器学习领域影响力最大的算法了.而在SVM算法的各种实现工具中,由国立台湾大学林智仁老师开发的工具包LIBSVM,又无疑是影响力最大的.2

LibLinear(SVM包)的MATLAB安装

LibLinear(SVM包)的MATLAB安装 1 LIBSVM介绍 LIBSVM是众所周知的支持向量机分类工具包(一些支持向量机(SVM)的开源代码库的链接及其简介),运用方便简单,其中的核函数(常用核函数-Kernel Function)可以自己定义也可以默认.但是对一些大数据来说,有没有非线性映射,他们的性能差不多.如果不使用核,我们可以用线性分类或者回归来训练一个更大的数据集.这些数据往往具有非常高维的特征,例如文本分类Document classification.所以LIBSVM就

LibLinear(SVM包)使用说明之(一)README

LibLinear(SVM包)使用说明之(一)README LibLinear(SVM包)使用说明之(一)README [email protected] http://blog.csdn.net/zouxy09 本文主要是翻译liblinear-1.93版本的README文件.里面介绍了liblinear的详细使用方法.更多信息请参考: http://www.csie.ntu.edu.tw/~cjlin/liblinear/ 在这里我用到的是LibLinear的Matlab接口,这个在下一博文

Libliner 中的-s 参数选择:primal 和dual

LIBLINEAR的优化算法主要分为两大类,即求解原问题(primal problem)和对偶问题(dual problem).求解原问题使用的是TRON的优化算法,对偶问题使用的是Coordinate Descent优化算法.总的来说,两个算法的优化效率都较高,但还是有各自更加擅长的场景.对于样本量不大,但是维度特别高的场景,如文本分类,更适合对偶问题求解,因为由于样本量小,计算出来的Kernel Matrix也不大,后面的优化也比较方便.而如果求解原问题,则求导的过程中要频繁对高维的特征矩阵

Machine Learning - 第7周

SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing a cleverly-chosen optimization objective, one of the most widely used learning algorithms today. Support Vector Machines Large Margin Classification Opt

让Python跑得更快

点击关注 异步图书,置顶公众号 每天与你分享 IT好书 技术干货 职场知识 Tips 参与文末话题讨论,即有机会获得异步图书一本. Python很容易学.你之所以阅读本文可能是因为你的代码现在能够正确运行,而你希望它能跑得更快.你可以很轻松地修改代码,反复地实现你的想法,你对这一点很满意.但能够轻松实现和代码跑得够快之间的取舍却是一个世人皆知且令人惋惜的现象.而这个问题其实是可以解决的. 有些人想要让顺序执行的过程跑得更快.有些人需要利用多核架构.集群,或者图形处理单元的优势来解决他们的问题.有

机器学习公开课笔记(7):支持向量机

支持向量机(Support Vector Machine, SVM) 考虑logistic回归,对于$y=1$的数据,我们希望其$h_\theta(x) \approx 1$,相应的$\theta^Tx \gg 0$; 对于$y=0$的数据,我们希望$h_\theta(x) \approx 0$,相应的$\theta^Tx \ll 0$.每个数据点的代价为: $$-\left[y\log(h_\theta(x))+(1-y)\log(1-h\theta(x))\right]$$当$y=1$时其代

文本分类--多分类

文本分类算是自然语言处理领域最最常见的问题了,开源的工具也很好用,但是苦于训练速度缓慢,需要引进多核的版本,开源提供的多核支持参数有限,而同事提供的又有语言障碍,觉得自己探索下多分类器. 分类算法有很多,但是效果较好的基本就是LR和SVM,而这两个算法业内著名的开源代码应该就是liblinear和libsvm,libsvm支不支持多核暂时还未了解,但是liblinear支持的多核版本也就三组(0.2.11),正好避开了我需要用的那组参数,于是就摸索下liblinear的train代码. 一.先说

用 WEKA 进行数据挖掘 ——第一章:简介

1.简介数据挖掘.机器学习这些字眼,在一些人看来,是门槛很高的东西.诚然,如果做算法实现甚至算法优化,确实需要很多背景知识.但事实是,绝大多数数据挖掘工程师,不需要去做算法层面的东西.他们的精力,集中在特征提取,算法选择和参数调优上.那么,一个可以方便地提供这些功能的工具,便是十分必要的了.而weka,便是数据挖掘工具中的佼佼者.Weka的全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),是一款免费的,非商业化的,基于JAVA环境下