ACM学习历程—HDU1003 Max Sum(dp && 最大子序列和)

Description

Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.

Input

The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).

Output

For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.

Sample Input

2

5 6 -1 5 4 -7

7 0 6 -1 1 -6 7 -5

Sample Output

Case 1:

14 1 4

Case 2:

7 1 6

这是一道求最大子序列和的题。

思路就是考虑到对于S(i...k) + S(k+1...j) = S(i...j),如果S(i...k)小于0,自然考虑S(k+1...j)这段和;反之,考虑S(i...j)。

于是从1到n,判断当前的S(i...k)是否小于0,大于0则保留,否则舍去。

考虑到可能整个过程可能S(i...k)一直小于0,所以即使小于0,也要保留当前值now,将其与ans比较。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <vector>

using namespace std;

int n;
int ans, from, to;

void Work()
{
    from = -1;
    to = -1;
    int k, now, u = -1, v = -1;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i)
    {
        scanf("%d", &k);
        if (u == -1 || now < 0 || now+k < 0)
        {
            u = v = i;
            now = k;
        }
        else
        {
            v = i;
            now = now+k;
        }
        if (from == -1 || now > ans)
        {
            ans = now;
            from = u;
            to = v;
        }
    }
}

int main()
{
    //freopen("test.in", "r", stdin);
    int T;
    scanf("%d", &T);
    for (int times = 1; times <= T; ++times)
    {
        Work();
        if (times != 1)
            printf("\n");
        printf("Case %d:\n", times);
        printf("%d %d %d\n", ans, from, to);
    }
    return 0;
}
时间: 2024-10-13 10:53:17

ACM学习历程—HDU1003 Max Sum(dp && 最大子序列和)的相关文章

ACM学习历程—POJ1088 滑雪(dp &amp;&amp; 记忆化搜索)

Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道载一个区域中最长底滑坡.区域由一个二维数组给出.数组的每个数字代表点的高度.下面是一个例子 1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9 一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小.在上面的例子

HDU1003 Max Sum

题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 题意:给你一组数字,求出最大的字段和. 思路:这是一个经典的dp题目,定义数组a储存一组数字,a[j]为ji个数,dp[j]表示已j结尾的最大字段和,那么dp[j]=max(dp[j-1]+a[j],dp[j]). 例如: a[]       6   -1   5    4    -7 dp[]     6    5   10  14    7 代码如下: #include <iostream

ACM学习历程—HDU 4726 Kia&#39;s Calculation( 贪心&amp;&amp;计数排序)

DescriptionDoctor Ghee is teaching Kia how to calculate the sum of two integers. But Kia is so careless and alway forget to carry a number when the sum of two digits exceeds 9. For example, when she calculates 4567+5789, she will get 9246, and for 12

解题报告:hdu1003 Max Sum - 最大连续区间和 - 计算开头和结尾

2017-09-06 21:32:22 writer:pprp 可以作为一个模板 /* @theme: hdu1003 Max Sum @writer:pprp @end:21:26 @declare:连续区间最大和 @data:2017/9/6 */ #include <bits/stdc++.h> using namespace std; int main() { //freopen("in.txt","r",stdin); int cas; cin

ACM学习历程—HDU 5023 A Corrupt Mayor&#39;s Performance Art(广州赛区网赛)(线段树)

Problem Description Corrupt governors always find ways to get dirty money. Paint something, then sell the worthless painting at a high price to someone who wants to bribe him/her on an auction, this seemed a safe way for mayor X to make money. Becaus

HDU1003 Max Sum 最大子序列和的问题【四种算法分析+实现】

就拿杭电OJ上的第1003题开始吧,这题比原书要复杂一些. Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14. Input The fi

ACM学习历程—UESTC 1226 Huatuo&#39;s Medicine(数学)(2015CCPC L)

题目链接:http://acm.uestc.edu.cn/#/problem/show/1226 题目就是构造一个对称的串,除了中间的那个只有1个,其余的两边都是对称的两个,自然答案就是2*n-1. 代码: #include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <cstring> #include <algorithm> #

HDU 1003 Max Sum(dp,最大连续子序列和)

Max Sum Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14. Input The first line of the input

HDU 1003 Max Sum 最大连续子序列的和

Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14. Input The first line of the input contains