Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
这是一道求最大子序列和的题。
思路就是考虑到对于S(i...k) + S(k+1...j) = S(i...j),如果S(i...k)小于0,自然考虑S(k+1...j)这段和;反之,考虑S(i...j)。
于是从1到n,判断当前的S(i...k)是否小于0,大于0则保留,否则舍去。
考虑到可能整个过程可能S(i...k)一直小于0,所以即使小于0,也要保留当前值now,将其与ans比较。
代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> #include <set> #include <map> #include <vector> using namespace std; int n; int ans, from, to; void Work() { from = -1; to = -1; int k, now, u = -1, v = -1; scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &k); if (u == -1 || now < 0 || now+k < 0) { u = v = i; now = k; } else { v = i; now = now+k; } if (from == -1 || now > ans) { ans = now; from = u; to = v; } } } int main() { //freopen("test.in", "r", stdin); int T; scanf("%d", &T); for (int times = 1; times <= T; ++times) { Work(); if (times != 1) printf("\n"); printf("Case %d:\n", times); printf("%d %d %d\n", ans, from, to); } return 0; }