TEA,XXTEA介绍,对称加密

总结:在使用加密的时候,我们可以加入随机数,这样相同的明文,每次加密后得到不同的密文,同时可以在密文中加入密文有效期,控制密文的有效时间长度。

针对有的功能扩展使用,很好的思想。

TEA对 64 位数据加密密钥长达 128 位,安全性相当好。其可靠性是通过加密轮数而不是算法的复杂度来保证的。从中可以看到TEA 算法主要运用了移位和异或运算。密钥在加密过程中始终不变。

TEA(Tiny Encryption Algorithm)是一种小型的对称加密解密算法,支持128位密码,与BlowFish一样TEA每次只能加密/解密8字节数据。TEA特点是速度快、效率高,实现也非常简单。由于针对TEA的攻击不断出现,所以TEA也发展出几个版本,分别是XTEA、Block TEA和XXTEA。

TEA使用64位一组加密,128长度的秘钥,加密的到结果。相对XXTEA其加密可靠性低。

void encrypt(unsigned long *v, unsigned long *k) {
 2     unsigned long y=v[0], z=v[1], sum=0, i;         /* set up */
 3     unsigned long delta=0x9e3779b9;                 /* a key schedule constant */
 4     unsigned long a=k[0], b=k[1], c=k[2], d=k[3];   /* cache key */
 5     for (i=0; i < 32; i++) {                        /* basic cycle start */
 6         sum += delta;
 7         y += ((z<<4) + a) ^ (z + sum) ^ ((z>>5) + b);
 8         z += ((y<<4) + c) ^ (y + sum) ^ ((y>>5) + d);/* end cycle */
 9     }
10     v[0]=y;
11     v[1]=z;
12 }
13 
14 void decrypt(unsigned long *v, unsigned long *k) {
15     unsigned long y=v[0], z=v[1], sum=0xC6EF3720, i; /* set up */
16     unsigned long delta=0x9e3779b9;                  /* a key schedule constant */
17     unsigned long a=k[0], b=k[1], c=k[2], d=k[3];    /* cache key */
18     for(i=0; i<32; i++) {                            /* basic cycle start */
19         z -= ((y<<4) + c) ^ (y + sum) ^ ((y>>5) + d);
20         y -= ((z<<4) + a) ^ (z + sum) ^ ((z>>5) + b);
21         sum -= delta;                                /* end cycle */
22     }
23     v[0]=y;
24     v[1]=z;
25 }

XXTEA加密字符串长度不是 4 的整数倍,则这些实现的在加密后无法真正还原,还原以后的字符串实际上与原字符串不相等,而是后面多了一些 \0 的字符,或者少了一些 \0 的字符。原因在于 XXTEA 算法只定义了如何对 32 位的信息块数组(实际上是 32 位无符号整数数组)进行加密,而并没有定义如何来将字符串编码为这种数组。而现有的实现中在将字符串编码为整数数组时,都丢失了字符串长度信息,因此还原出现了问题。

#define MX (z>>5^y<<2) + (y>>3^z<<4)^(sum^y) + (k[p&3^e]^z);
 
  long btea(long* v, long n, long* k) {
    unsigned long z=v[n-1], y=v[0], sum=0, e, DELTA=0x9e3779b9;
    long p, q ;
    if (n > 1) {         
      q = 6 + 52/n;
      while (q-- > 0) {
        sum += DELTA;
        e = (sum >> 2) & 3;
        for (p=0; p<n-1; p++) y = v[p+1], z = v[p] += MX;
        y = v[0];
        z = v[n-1] += MX;
      }
      return 0 ;
    } else if (n < -1) { 
      n = -n;
      q = 6 + 52/n;
      sum = q*DELTA ;
      while (sum != 0) {
        e = (sum >> 2) & 3;
        for (p=n-1; p>0; p--) z = v[p-1], y = v[p] -= MX;
        z = v[n-1];
        y = v[0] -= MX;
        sum -= DELTA;
      }
      return 0;
    }
    return 1;
  }

long btea(long* v, long n, long* k)

v是要加密的组元的起始地址,以32bit为单位,这里用long来实现。

n是要加密的组元个数,正数是加密,负数是解密。

k是密钥的起始地址,长度为4个组元,4*32=128bit。

返回值为0或1(对应n=0,没有计算)。

加密的结果会直接写回到v中。

经过试验,我还有一点要补充的,XXTEA的计算是空间相关的,也就是说,在一个组元中,4个字节是不能断章取义的,即密文的一部分,并不能还原成明文的一部分。所以,当数据不能被4个字节整除时,要做好字节的填充和对其等辅助工作。

时间: 2024-08-27 03:34:36

TEA,XXTEA介绍,对称加密的相关文章

对称加密与非对称加密

(一)对称加密(Symmetric Cryptography) 对称加密是最快速.最简单的一种加密方式,加密(encryption)与解密(decryption)用的是同样的密钥(secret key).对称加密有很多种算法,由于它效率很高,所以被广泛使用在很多加密协议的核心当中. 对称加密通常使用的是相对较小的密钥,一般小于256 bit.因为密钥越大,加密越强,但加密与解密的过程越慢.如果你只用1 bit来做这个密钥,那黑客们可以先试着用0来解密,不行的话就再用1解:但如果你的密钥有1 MB

对称加密和非对称加密的比较

对称加密: 对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥,即加密密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法,对称加密算法使用起来简单快捷,密钥较短,且破译困难,除了数据加密标准(DES),另一个对称密钥加密系统是国际数据加密算法(IDEA),它比DES的加密性好,而且对计算机功能要求也没有那么高.IDEA加密标准由PGP(PrettyGood Privacy)系统使用. 对称加密算法在电子商务交易过程中存在几个问题: 1.要求提供一条安全的渠道使通讯双方

**17.app后端如何保证通讯安全--aes对称加密

在上文<16.app后端如何保证通讯安全--url签名>提到,url签名有两个缺点,这两个缺点,如果使用对称加密方法的话,则完全可以避免这两个缺点.在本文中,会介绍对称加密的具体原理,和详细的方案,使app通讯更加安全. 1.对称加密的原理 采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密. 其实很简单,假设有原始数据"1000", 把1000加5就得到密文"1005",得到密文"1

SpringCloud-分布式配置中心【加密-对称加密】

??前面我们介绍了SpringCloud的分布式配置中心,我们将项目中的配置信息保存在git或者码云的仓库中,但是这样一些敏感信息就暴露出来了,比如数据库连接的账号密码等信息,这时我们最好能够对这些信息进行加密处理. 案例代码:https://github.com/q279583842q/springcloud-e-book 对称加密 一.对称加密介绍 ??对称加密是最快速.最简单的一种加密方式,加密(encryption)与解密(decryption)用的是同样的密钥(secret key).

对称加密和非对称加密介绍和区别

什么是对称加密技术? 对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥加密 也就是密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法,对称加密算法使用起来简单快捷,密钥较短,且破译困难,除了数据加密标准(DES),另一个对称密钥加密系统是国际数据加密算法(IDEA),它比DES的加密性好,而且对计算机功能要求也没有那么高 对称加密算法在电子商务交易过程中存在几个问题: 1.要求提供一条安全的渠道使通讯双方在首次通讯时协商一个共同的密钥.直接的面对面协商可能是不现实而

安全HTTPS-全面详解对称加密,非对称加密,数字签名,数字证书和HTTPS

一,对称加密 所谓对称加密,就是它们在编码时使用的密钥e和解码时一样d(e=d),我们就将其统称为密钥k. 对称加解密的过程如下: 发送端和接收端首先要共享相同的密钥k(即通信前双方都需要知道对应的密钥)才能进行通信.发送端用共享密钥k对明文p进行加密,得到密文c,并将得到的密文发送给接收端,接收端收到密文后,并用其相同的共享密钥k对密文进行解密,得出明文p. 一般加密和解密的算法是公开的,需要保持隐秘的是密钥k,流行的对称加密算法有:DES,Triple-DES,RC2和RC4 对称加密的不足

Android安全加密:对称加密与非对称加密

凯撒密码 1. 介绍 凯撒密码作为一种最为古老的对称加密体制,在古罗马的时候都已经很流行,他的基本思想是:通过把字母移动一定的位数来实现加密和解密.明文中的所有字母都在字母表上向后(或向前)按照一个固定数目进行偏移后被替换成密文.例如,当偏移量是3 的时候,所有的字母A 将被替换成D,B 变成E,由此可见,位数就是凯撒密码加密和解密的密钥. 例如:字符串"ABC"的每个字符都右移3 位则变成"DEF",解密的时候"DEF"的每个字符左移3 位即能

SSH HTTPS 公钥、秘钥、对称加密、非对称加密、 总结理解

DES: Digital Encryption Standard. Obsolete standard. 单密钥算法,是信息的发送方采用密钥A进行数据加密,信息的接收方采用同一个密钥A进行数据解密. 单密钥算法是一个对称算法. 算法好在加/解速度快,密钥量短,采用对称加密 DSA: Digital Signature Algorithm. based on discrete logarithms computation. 用于签名 RSA: RSA 是一种非对称加解密算法. RSA 与 DSA

python AES 双向对称加密解密

高级加密标准(Advanced Encryption Standard,AES),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准.这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用.经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准.2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一.AES只是个基本算法,实现AES有若干模式.其中