opencv-阈值化处理

原理摘自:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/threshold/threshold.html

目标:

本节简介:

  • OpenCV中的阈值(threshold)函数: threshold 的运用。

基本理论:

注意:
本节的解释出自Bradski与Kaehler的书籍 Learning OpenCV 。

什么是阈值?

  • 最简单的图像分割的方法。
  • 应用举例:从一副图像中利用阈值分割出我们需要的物体部分(当然这里的物体可以是一部分或者整体)。这样的图像分割方法是基于图像中物体与背景之间的灰度差异,而且此分割属于像素级的分割。
  • 为了从一副图像中提取出我们需要的部分,应该用图像中的每一个像素点的灰度值与选取的阈值进行比较,并作出相应的判断。(注意:阈值的选取依赖于具体的问题。即:物体在不同的图像中有可能会有不同的灰度值。
  • 一旦找到了需要分割的物体的像素点,我们可以对这些像素点设定一些特定的值来表示。(例如:可以将该物体的像素点的灰度值设定为:‘0’(黑色),其他的像素点的灰度值为:‘255’(白色);当然像素点的灰度值可以任意,但最好设定的两种颜色对比度较强,方便观察结果)。

阈值化的类型:

  • OpenCV中提供了阈值(threshold)函数: threshold 。

  • 这个函数有5种阈值化类型,在接下来的章节中将会具体介绍。
  • 为了解释阈值分割的过程,我们来看一个简单有关像素灰度的图片,该图如下。该图中的蓝色水平线代表着具体的一个阈值。

阈值类型1:二进制阈值化

  • 该阈值化类型如下式所示:

  • 解释:在运用该阈值类型的时候,先要选定一个特定的阈值量,比如:125,这样,新的阈值产生规则可以解释为大于125的像素点的灰度值设定为最大值(如8位灰度值最大为255),灰度值小于125的像素点的灰度值设定为0。

阈值类型2:反二进制阈值化

  • 该阈值类型如下式所示:

  • 解释:该阈值化与二进制阈值化相似,先选定一个特定的灰度值作为阈值,不过最后的设定值相反。(在8位灰度图中,例如大于阈值的设定为0,而小于该阈值的设定为255)。

阈值类型3:截断阈值化

  • 该阈值化类型如下式所示:

  • 解释:同样首先需要选定一个阈值,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变。(例如:阈值选取为125,那小于125的阈值不改变,大于125的灰度值(230)的像素点就设定为该阈值)。

阈值类型4:阈值化为0

  • 该阈值类型如下式所示:

  • 解释:先选定一个阈值,然后对图像做如下处理:1 像素点的灰度值大于该阈值的不进行任何改变;2 像素点的灰度值小于该阈值的,其灰度值全部变为0。

阈值类型5:反阈值化为0

  • 该阈值类型如下式所示:

  • 解释:原理类似于0阈值,但是在对图像做处理的时候相反,即:像素点的灰度值小于该阈值的不进行任何改变,而大于该阈值的部分,其灰度值全部变为0。

部分代码:

// ConsoleApplication3_6_23.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include<opencv2/opencv.hpp>
#include<iostream>
using namespace std;
using namespace cv;

Mat src,gray,dst;
int thr_value = 0;
int thr_type = 0;

const int max_type = 4;
const int max_value = 255;
const int max_binary_value = 255;

char *windowName = "Demo";
void Image_thred(int,void*);
int _tmain(int argc, _TCHAR* argv[])
{
	src = imread("test.png");

	if(!src.data)
		return -1;

	cvtColor(src,gray,CV_RGB2GRAY);
	namedWindow("灰度图",CV_WINDOW_AUTOSIZE);
	imshow("灰度图",gray);

	namedWindow(windowName,CV_WINDOW_AUTOSIZE);
	createTrackbar("Type: \n 0: Binary \n 1: Binary Inverted \n 2: Truncate \n 3: To Zero \n 4: To Zero Inverted",
		windowName,&thr_type,max_type,Image_thred);
	createTrackbar("Value",
		windowName,&thr_value,max_value,Image_thred);

	Image_thred(0,0);
	waitKey(0);
	return 0;
}

void Image_thred(int,void*)
{
	  /* 0: 二进制阈值
     1: 反二进制阈值
     2: 截断阈值
     3: 0阈值
     4: 反0阈值
   */
	threshold(gray,dst,thr_value,max_binary_value,thr_type);
	imshow(windowName,dst);
}

关键函数解释:

threshold( src_gray, dst, threshold_value, max_BINARY_value,threshold_type );
  • src_gray: 输入的灰度图像的地址。
  • dst: 输出图像的地址。
  • threshold_value: 进行阈值操作时阈值的大小。
  • max_BINARY_value: 设定的最大灰度值(该参数运用在二进制与反二进制阈值操作中)。
  • threshold_type: 阈值的类型。从上面提到的5种中选择出的结果。

opencv-阈值化处理

时间: 2024-10-12 19:48:05

opencv-阈值化处理的相关文章

OpenCV阈值化处理

图像的阈值化就是利用图像像素点分布规律,设定阈值进行像素点分割,进而得到图像的二值图像.图像阈值化操作有多种方法,常用方法有经典的OTSU.固定阈值.自适应阈值.双阈值及半阈值化操作.这里对各种阈值化操作进行一个总结. OTSU阈值化 在阈值化处理中,常用的算法就是OTSU.发明人是Nobuyuki Ostu.这种二值化操作阈值的选取非常重要,阈值选取的不合适,可能得到的结果就毫无用处.简单的说,这种算法假设衣服图像由前景色和背景色组成.通过统计学的方法来选取一个阈值,使这个阈值可以将前景色和背

OpenCV的阈值化函数threshold

在OpenCV中,threshold用来进行对图像(二维数组)的二值化阈值处理 通过查找OpenCV在线文档,发现存在很多函数: 其函数原型如下: 1. C版本的:函数原型: void cvThreshold( const CvArr* src, CvArr* dst, double threshold,double max_value, int threshold_type ); src,dst: 不必多说,其要求类型一致性: threshold:需要设置的阈值,当像素值大于某个数字时,设定一

opencv学习之路(13)、图像阈值化

一.图像阈值化简介 二.固定阈值 三.自适应阈值 1 #include<opencv2/opencv.hpp> 2 using namespace cv; 3 4 void main(){ 5 Mat src=imread("E://1.jpg",0);//以灰度模式读入 6 Mat dst; 7 //threshold(src,dst,100,255,CV_THRESH_BINARY); 8 //adaptiveThreshold(src,dst,255,CV_ADAPT

OpenCV实现图像阈值化

纯粹阅读,请移步OpenCV实现图像阈值化 效果图 源码 KqwOpenCVBlurDemo 阈值化是一种将我们想要在图像中分析的区域分割出来的方法. 我们把每个像素值都与一个预设的阈值做比较,再根据比较的结果调整像素值. 类似这样 Imgproc.threshold(src,src,100,255,Imgproc.THRESH_BINARY); 其中100是阈值,255是最大值(纯白色的值). 常量 名称 常量 二值阈值化 Imgproc.THRESH_BINARY 阈值化到零 Imgproc

《OpenCV:灰度图像阈值化分割常见方法总结及VC代码》

支持原创,拿来收藏!转载地址:http://blog.csdn.net/likezhaobin/article/details/6915755?userName=u014395105&userInfo=aWOfy4XjkeuESVqMgVdrnPewKx6gaD2TZ6xUFF%2FXs%2FeZjmZKRHLyhzVPli3izF4JpSQuVNfcdFRe6pvuXl6VvRJ%2FSmjVpClq8XgXbwl56GUA19Luch91NWA57umNAidF94p6X1kqBpQ9l4%

openCV—Python(10)—— 图像阈值化处理

一.函数简介 1.threshold-图像简单阈值化处理 函数原型:threshold(src, thresh, maxval, type, dst=None) src:图像矩阵 thresh:阈值 maxVal:像素最大值 type:阈值化类型 2.adaptiveThreshold-图像自适应阈值化处理 函数原型:adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C, dst=None) sr

【练习6.1】阈值化、腐蚀、cvFilter2D及自定义滤波器

提纲 题目要求 程序代码 结果图片 要言妙道 题目要求: 用cvFilter2D创建一个滤波器,只检测一副图像里的60度角的直线.将结果显示.做一下分部步操作: a.自定义卷积核,使用cvFilter2D,处理图像 b.对a的结果图片阈值化,是60度上的直线更清晰 c.对b的结果腐蚀 备注: 对于这道题,我的理解是,只保留一副图片60度角上的直线,是为了增加对自定义滤波器的熟悉度 在Opencv卷积滤波cvFilter2D一文中有更多常用的滤波器模板可以借鉴 程序代码: 1 // OpenCVE

Opencv3编程入门笔记(4)腐蚀、膨胀、开闭运算、漫水填充、金字塔、阈值化、霍夫变换

19      腐蚀erode.膨胀dilate 腐蚀和膨胀是针对图像中的白色部分(高亮部分)而言的,不是黑色的.除了输入输出图像外,还需传入模板算子element,opencv中有三种可以选择:矩形MORPH_RECT,交叉形MORPH_CROSS,椭圆形MORPH_ELLIPSE.Matlab中会有更多一点的模板. 例如: Mat element = getStructuringElement(MORPH_RECT,Size(15,15)); erode(srcImage,dstImage,

灰度图像阈值化分割常见方法总结及VC实现

转载地址:http://blog.csdn.net/likezhaobin/article/details/6915755 在图像处理领域,二值图像运算量小,并且能够体现图像的关键特征,因此被广泛使用.将灰度图像变为二值图像的常用方法是选定阈值,然后将待处理图像的每个像素点进行单点处理,即将其灰度值与所设置的门限进行比对,从而得到二值化的黑白图.这样一种方式因为其直观性以及易于实现,已经在图像分割领域处于中心地位.本文主要对最近一段时间作者所学习的阈值化图像分割算法进行总结,全文描述了作者对每种

阈值化

一.固定阈值化Threshold()函数 double threshold( InputArray src, OutputArray dst, double thresh, double maxval, int type ); 二.自适应阈值操作:adaptiveThreshold()函数 void adaptiveThreshold( InputArray src, OutputArray dst, double maxValue, int adaptiveMethod, int thresh