C++机器学习经典资料

Caffe :快速的神经网络框架

地址:https://github.com/BVLC/caffe

CCV :以C语言为核心的现代计算机视觉库

地址:https://github.com/liuliu/ccv

mlpack :可扩展的C++机器学习库

地址:https://github.com/anticlockw

OpenCV:开源计算机视觉库

地址:https://github.com/Itseez/opencv

Recommender:使用协同过滤进行产品推荐/建议的C语言库

地址:https://github.com/yixuan/recosystem

SHOGUN:Shogun 机器学习工具

地址:https://github.com/shogun-toolbox/shogun

sofia-ml :用于机器学习的快速增量算法套件

地址:https://github.com/zygmuntz/sofia-ml-mod

时间: 2024-10-29 19:12:34

C++机器学习经典资料的相关文章

【转】自学成才秘籍!机器学习&深度学习经典资料汇总

小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Sc

[转载]机器学习&amp;深度学习经典资料汇总,全到让人震惊

自学成才秘籍!机器学习&深度学习经典资料汇总 转自:中国大数据: http://www.thebigdata.cn/JiShuBoKe/13299.html [日期:2015-01-27] 来源:亚马逊  作者: [字体:大 中 小] 小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感

机器学习经典书籍

前面有一篇机器学习经典论文/survey合集331.本文总结了机器学习10的经典书籍,包括数学基础和算法理论的书籍.本文会保持更新,欢迎推荐. 入门书单 <数学之美> PDF683作者吴军大家都很熟悉.以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用. <Programming Collective Intelligence>(<集体智慧编程>)PDF389作者Toby Segaran也是<BeautifulData : The Stories Be

[转]机器学习经典书籍

算法组 注册 登录 机器学习经典书籍 机器学习 machine-learning 书单 你已经选择了 0 个帖子. 全选 取消选择 1 / 6 sys 14-12-9 5 选择以及回复其的帖子 选择 前面有一篇机器学习经典论文/survey合集223.本文总结了机器学习的经典书籍,包括数学基础和算法理论的书籍.本文会保持更新,欢迎推荐. 入门书单 <数学之美> PDF364作者吴军大家都很熟悉.以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用. <Programming C

机器学习经典书籍&amp;论文

原文地址:http://blog.sina.com.cn/s/blog_7e5f32ff0102vlgj.html 入门书单 1.<数学之美>PDF6 作者吴军大家都很熟悉.以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用. 2.<Programming Collective Intelligence>(<集体智慧编程>)PDF3 作者Toby Segaran也是<BeautifulData : The Stories Behind Elegant

分享《Python机器学习经典实例》+PDF+源码+Prateek Joshi+陶俊杰

下载:https://pan.baidu.com/s/1UqX_Efi3c7-oaN40PXZwlw 更多资料分享:http://blog.51cto.com/14087171 <Python机器学习经典实例>(高清中文版PDF+高清英文版PDF+源代码) 最新出版的Python机器学习经典实例.高清中文版,270页,带目录书签,文字可复制粘贴.高清英文版,295页,带目录书签,文字可复制粘贴.配有源代码. 经典书籍,讲解详细:其中,高清中文版如图: 原文地址:http://blog.51ct

机器学习书籍资料推荐

本文为转载,源地址为:http://blog.chinaunix.net/uid-10314004-id-3594337.html 机器学习的资料较多,初学者可能会不知道怎样去有效的学习,所以对这方面的资料进行了一个汇总,希望能够对和我一样的初学者有一定的借鉴. 1. 数学基础    机器学习是构建于数学的基础之上的,因此只有把数学的基本功打好,才能够在机器学习领域有长远的发展.正所谓”勿在浮沙筑高台“. 微积分:微积分学教程 (F.M.菲赫金哥尔茨)俄罗斯的数学书 线性代数:Linear Al

机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用

摘要: 朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类.总的来说:当样本特征个数较多或者特征之间相关性较大时,朴素贝叶斯分类效率比不上决策树模型:当各特征相关性较小时,朴素贝叶斯分类性能最为良好.另外朴素贝叶斯的计算过程类条件概率等计算彼此是独立的,因此特别适于分布式计算.本文详述了朴素贝叶斯分类的统计学

机器学习经典算法具体解释及Python实现--线性回归(Linear Regression)算法

(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測,如前面讲过的KNN.决策树.朴素贝叶斯.adaboost.SVM.Logistic回归都是分类算法.回归算法用于连续型分布预測.针对的是数值型的样本,使用回归.能够在给定输入的时候预測出一个数值.这是对分类方法的提升,由于这样能够预測连续型数据而不不过离散的类别标签. 回归的目的就是建立一个回归方程