Linux I/O复用中select poll epoll模型的介绍及其优缺点的比較

关于I/O多路复用:

I/O多路复用(又被称为“事件驱动”),首先要理解的是。操作系统为你提供了一个功能。当你的某个socket可读或者可写的时候。它能够给你一个通知。这样当配合非堵塞的socket使用时,仅仅有当系统通知我哪个描写叙述符可读了,我才去运行read操作。能够保证每次read都能读到有效数据而不做纯返回-1和EAGAIN的无用功。写操作相似。操作系统的这个功能通过select/poll/epoll之类的系统调用来实现。这些函数都能够同一时候监视多个描写叙述符的读写就绪状况,这样。**多个描写叙述符的I/O操作都能在一个线程内并发交替地顺序完毕,这就叫I/O多路复用,这里的“复用”指的是复用同一个线程。

一、I/O复用之select

1、介绍:

select系统调用的目的是:在一段指定时间内。监听用户感兴趣的文件描写叙述符上的可读、可写和异常事件。poll和select应该被归类为这种系统调用,它们能够堵塞地同一时候探測一组支持非堵塞的IO设备,直至某一个设备触发了事件或者超过了指定的等待时间——也就是说它们的职责不是做IO,而是帮助调用者寻找当前就绪的设备。

以下是select的原理图:

2、select系统调用API例如以下:

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);

fd_set结构体是文件描写叙述符集,该结构体实际上是一个整型数组,数组中的每一个元素的每一位标记一个文件描写叙述符。fd_set能容纳的文件描写叙述符数量由FD_SETSIZE指定。普通情况下,FD_SETSIZE等于1024,这就限制了select能同一时候处理的文件描写叙述符的总量。

3、以下介绍一下各个參数的含义:

1)nfds參数指定被监听的文件描写叙述符的总数。

通常被设置为select监听的全部文件描写叙述符中最大值加1;

2)readfds、writefds、exceptfds分别指向可读、可写和异常等事件相应的文件描写叙述符集合。这三个參数都是传入传出型參数,指的是在调用select之前,用户把关心的可读、可写、或异常的文件描写叙述符通过FD_SET(以下介绍)函数分别加入进readfds、writefds、exceptfds文件描写叙述符集,select将对这些文件描写叙述符集中的文件描写叙述符进行监听,假设有就绪文件描写叙述符,select会重置readfds、writefds、exceptfds文件描写叙述符集来通知应用程序哪些文件描写叙述符就绪。这个特性将导致select函数返回后。再次调用select之前,必须重置我们关心的文件描写叙述符,也就是三个文件描写叙述符集已经不是我们之前传入 的了。

3)timeout參数用来指定select函数的超时时间(以下讲select返回值时还会谈及)。

struct timeval
{
    long tv_sec;        //秒数
    long tv_usec;       //微秒数
};

4、以下几个函数(宏实现)用来操纵文件描写叙述符集:

void FD_SET(int fd, fd_set *set);   //在set中设置文件描写叙述符fd
void FD_CLR(int fd, fd_set *set);   //清除set中的fd位
int  FD_ISSET(int fd, fd_set *set); //推断set中是否设置了文件描写叙述符fd
void FD_ZERO(fd_set *set);          //清空set中的全部位(在使用文件描写叙述符集前。应该先清空一下)
    //(注意FD_CLR和FD_ZERO的差别,一个是清除某一位,一个是清除全部位)

5、select的返回情况:

1)假设指定timeout为NULL,select会永远等待下去,直到有一个文件描写叙述符就绪,select返回。

2)假设timeout的指定时间为0,select根本不等待,马上返回;

3)假设指定一段固定时间,则在这一段时间内,假设有指定的文件描写叙述符就绪,select函数返回,假设超过指定时间,select同样返回。

4)返回值情况:

a)超时时间内,假设文件描写叙述符就绪,select返回就绪的文件描写叙述符总数(包含可读、可写和异常),假设没有文件描写叙述符就绪,select返回0;

b)select调用失败时,返回 -1并设置errno。假设收到信号。select返回 -1并设置errno为EINTR。

6、文件描写叙述符的就绪条件:

在网络编程中,

1)下列情况下socket可读:

a) socket内核接收缓冲区的字节数大于或等于其低水位标记SO_RCVLOWAT;

b) socket通信的对方关闭连接,此时该socket可读,可是一旦读该socket。会马上返回0(能够用这种方法推断client端是否断开连接);

c) 监听socket上有新的连接请求。

d) socket上有未处理的错误。

2)下列情况下socket可写:

a) socket内核发送缓冲区的可用字节数大于或等于其低水位标记SO_SNDLOWAT;

b) socket的读端关闭。此时该socket可写。一旦对该socket进行操作。该进程会收到SIGPIPE信号。

c) socket使用connect连接成功之后;

d) socket上有未处理的错误。

二、I/O复用之poll

1、poll系统调用的原理与原型和select基本相似。也是在指定时间内轮询一定数量的文件描写叙述符。以測试当中是否有就绪者。

2、poll系统调用API例如以下:

#include <poll.h>
int poll(struct pollfd *fds, nfds_t nfds, int timeout);

3、以下介绍一下各个參数的含义:

1)第一个參数是指向一个结构数组的第一个元素的指针,每一个元素都是一个pollfd结构,用于指定測试某个给定描写叙述符的条件。

struct pollfd
{
    int fd;             //指定要监听的文件描写叙述符
    short events;       //指定监听fd上的什么事件
    short revents;      //fd上事件就绪后,用于保存实际发生的时间
}。

待监听的事件由events成员指定,函数在相应的revents成员中返回该描写叙述符的状态(每一个文件描写叙述符都有两个事件,一个是传入型的events,一个是传出型的revents。从而避免使用传入传出型參数。注意与select的差别),从而告知应用程序fd上实际发生了哪些事件。events和revents都能够是多个事件的按位或。

2)第二个參数是要监听的文件描写叙述符的个数,也就是数组fds的元素个数;

3)第三个參数意义与select同样。

4、poll的事件类型:

在使用POLLRDHUP时,要在代码開始处定义_GNU_SOURCE

5、poll的返回情况:

与select同样。

三、I/O复用之epoll

1、介绍:

epoll 与select和poll在使用和实现上有非常大差别。

首先,epoll使用一组函数来完毕,而不是单独的一个函数。其次。epoll把用户关心的文件描写叙述符上的事件放在内核里的一个事件表中。无须向select和poll那样每次调用都要反复传入文件描写叙述符集合事件集。

2、创建一个文件描写叙述符,指定内核中的事件表:

#include<sys/epoll.h>
int epoll_create(int size);
    //调用成功返回一个文件描写叙述符。失败返回-1并设置errno。

size參数并不起作用。仅仅是给内核一个提示。告诉它事件表须要多大。

该函数返回的文件描写叙述符指定要訪问的内核事件表,是其它全部epoll系统调用的句柄。

3、操作内核事件表:

#include<sys/epoll.h>
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
    //调用成功返回0,调用失败返回-1并设置errno。

epfd是epoll_create返回的文件句柄。标识事件表。op指定操作类型。

操作类型有以下3种:

a)EPOLL_CTL_ADD, 往事件表中注冊fd上的事件;
b)EPOLL_CTL_MOD, 改动fd上注冊的事件;
c)EPOLL_CTL_DEL, 删除fd上注冊的事件。

event參数指定事件,epoll_event的定义例如以下:

struct epoll_event
{
    __int32_t events;       //epoll事件
    epoll_data_t data;      //用户数据
};

typedef union epoll_data
{
    void *ptr;
    int  fd;
    uint32_t u32;
    uint64_t u64;
}epoll_data;

在使用epoll_ctl时,是把fd加入、改动到内核事件表中,或从内核事件表中删除fd的事件。

假设是加入事件到事件表中,能够往data中的fd上加入事件events。或者不用data中的fd,而把fd放到用户数据ptr所指的内存中(由于epoll_data是一个联合体。仅仅能使用当中一个数据),再设置events。

3、epoll_wait函数

epoll系统调用的最关键的一个函数epoll_wait,它在一段时间内等待一个组文件描写叙述符上的事件。

#include<sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);
    //函数调用成功返回就绪文件描写叙述符个数,失败返回-1并设置errno。

timeout參数和select与poll同样。指定一个超时时间;maxevents指定最多监听多少个事件。events是一个传出型參数。epoll_wait函数假设检測到事件就绪,就将全部就绪的事件从内核事件表(epfd所指的文件)中复制到events指定的数组中。

这个数组用来输出epoll_wait检測到的就绪事件,而不像select与poll那样。这也是epoll与前者最大的差别,下文在比較三者之间的差别时还会说到。

四、三组I/O复用函数的比較

同样点:

1)三者都须要在fd上注冊用户关心的事件。

2)三者都要一个timeout參数指定超时时间。

不同点:

1)select:

a)select指定三个文件描写叙述符集,各自是可读、可写和异常事件,所以不能更加仔细地区分全部可能发生的事件。

b)select假设检測到就绪事件,会在原来的文件描写叙述符上改动,以告知应用程序,文件描写叙述符上发生了什么时间,所以再次调用select时,必须先重置文件描写叙述符

c)select採用对全部注冊的文件描写叙述符集轮询的方式,会返回整个用户注冊的事件集合,所以应用程序索引就绪文件的时间复杂度为O(n)。

d)select同意监听的最大文件描写叙述符个数通常有限制。通常是1024。假设大于1024,select的性能会急剧下降;

e)仅仅能工作在LT模式。

2)poll:

a)poll把文件描写叙述符和事件绑定,事件不但能够单独指定。并且能够是多个事件的按位或。这样更加细化了事件的注冊,并且poll单独採用一个元素用来保存就绪返回时的结果,这样在下次调用poll时。就不用重置之前注冊的事件;

b)poll採用对全部注冊的文件描写叙述符集轮询的方式。会返回整个用户注冊的事件集合。所以应用程序索引就绪文件的时间复杂度为O(n)。

c)poll用nfds參数指定最多监听多少个文件描写叙述符和事件,这个数能达到系统同意打开的最大文件描写叙述符数目。即65535。

d)仅仅能工作在LT模式。

3)epoll:

a)epoll把用户注冊的文件描写叙述符和事件放到内核当中的事件表中。提供了一个独立的系统调用epoll_ctl来管理用户的事件,并且epoll採用回调的方式。一旦有注冊的文件描写叙述符就绪,讲触发回调函数,该回调函数将就绪的文件描写叙述符和事件复制到用户空间events所管理的内存。这样应用程序索引就绪文件的时间复杂度达到O(1)。

b)epoll_wait使用maxevents来制定最多监听多少个文件描写叙述符和事件,这个数能达到系统同意打开的最大文件描写叙述符数目,即65535。

c)不仅能工作在LT模式,并且还支持ET高效模式(即EPOLLONESHOT事件,读者能够自己查一下这个事件类型,对于epoll的线程安全有非常好的帮助)。

select/poll/epoll总结:

原文地址:https://www.cnblogs.com/llguanli/p/8721103.html

时间: 2024-08-05 08:16:25

Linux I/O复用中select poll epoll模型的介绍及其优缺点的比較的相关文章

Linux I/O复用中select poll epoll模型的介绍及其优缺点的比较

关于I/O多路复用: I/O多路复用(又被称为"事件驱动"),首先要理解的是,操作系统为你提供了一个功能,当你的某个socket可读或者可写的时候,它可以给你一个通知.这样当配合非阻塞的socket使用时,只有当系统通知我哪个描述符可读了,我才去执行read操作,可以保证每次read都能读到有效数据而不做纯返回-1和EAGAIN的无用功.写操作类似.操作系统的这个功能通过select/poll/epoll之类的系统调用来实现,这些函数都可以同时监视多个描述符的读写就绪状况,这样,**多

IO复用之select poll epoll的总结

I/O复用使得程序能够同时监听多个文件描述符,对于提高程序性能至关重要.I/O复用不仅仅在网络程序中使用,但是我接触到的例子中,TCP网络编程那块使用I/O复用比较多,例如,TCP服务器同时处理监听socket和连接socket. 在了解I/O复用之前,我们需要先了解几个概念. 1,同步I/O与异步I/O 2,LT(水平触发)和ET(边缘触发) POSIX把两个术语定义如下: 同步I/O:导致请求进程阻塞,直到I/O操作完成 异步I/O:  不导致请求进程阻塞 阻塞是进程在等待某种资源,但是不能

IO复用一select, poll, epoll用法说明

三种IO复用类型 Select系统调用 #include<sys/select.h> int select(int nfds, fd_set* readfds, fd_set* writefds, fd_set* execptfds,struct timeval* timeout); #nfds表示监听的文件描述符总数: #readfds,writefds,execptfds分别表示对应的fd_set类型的集合 可以如下定义:fd_set readfds,writefds,execptfds

Linux下select&amp;poll&amp;epoll的实现原理(一)

最近简单看了一把Linux linux-3.10.25 kernel中select/poll/epoll这个几个IO事件检测API的实现.此处做一些记录.其基本的原理是相同的,流程如下 先依次调用fd对应的struct file.f_op->poll()方法(如果有提供实现的话),尝试检查每个提供待检测IO的fd是否已经有IO事件就绪 如果已经有IO事件就绪,则直接所收集到的IO事件返回,本次调用结束 如果暂时没有IO事件就绪,则根据所给定的超时参数,选择性地进入等待 如果超时参数指示不等待,则

Linux内核中网络数据包的接收-第二部分 select/poll/epoll

和前面文章的第一部分一样,这些文字是为了帮别人或者自己理清思路的,而不是所谓的源码分析,想分析源码的,还是直接debug源码最好,看任何文档以及书都是下策.因此这类帮人理清思路的文章尽可能的记成流水的方式,尽可能的简单明了. Linux 2.6+内核的wakeup callback机制 Linux 内核通过睡眠队列来组织所有等待某个事件的task,而wakeup机制则可以异步唤醒整个睡眠队列上的task,每一个睡眠队列上的节点都拥有一个 callback,wakeup逻辑在唤醒睡眠队列时,会遍历

Linux统系统开发12 Socket API编程3 TCP状态转换 多路IO高并发select poll epoll udp组播 线程池

[本文谢绝转载原文来自http://990487026.blog.51cto.com] Linux统系统开发12 Socket API编程3 TCP状态转换 多路IO高并发select  poll  epoll udp组播 线程池 TCP 11种状态理解: 1,客户端正常发起关闭请求 2,客户端与服务端同时发起关闭请求 3,FIN_WAIT1直接转变TIME_WAIT 4,客户端接收来自服务器的关闭连接请求 多路IO转接服务器: select模型 poll模型 epoll模型 udp组播模型 线

I/O复用的 select poll和epoll的简单实现

一个tcp的客户端服务器程序 服务器端不变,客户端通过I/O复用轮询键盘输入与socket输入(接收客户端的信息) 服务器端: 1 /*selcet服务器客户端模型: 2 1.客户端关闭后,服务器再向客户端发送信息,第一次会收到一个RST复位报文,第二次会收到SIGPIPE信号,导致服务器关闭,必须对这个信号进行处理: 3 1.在服务器对read返回值为0的情况进行处理,不向客户端发送信息 4 2.signal函数: signal(SIGPIPE, handle) 或者直接忽略signal(SI

详细说说select poll epoll

(以下内容来自网络和自己的总结,再次感谢网络中的大神们提供的见解) 在探索select poll  epoll之前我们首先要知道什么叫多路复用: 下来探索一下为什么会用到多路复用: 首先我们看看一个客户端请求服务器的完整过程.首先,请求过来,要建立连接,然后再接收数据,接收数据后,再发送数据. 具体到系统底层,就是读写事件,而当读写事件没有准备好时,必然不可操作,如果不用非阻塞的方式来调用,那就得阻塞调用了,事件没有准备好,那就只能等了,等事件准备好了,你再继续吧.阻塞调用会进入内核等待,cpu

几种典型的服务器网络编程模型归纳(select poll epoll)

1.同步阻塞迭代模型 同步阻塞迭代模型是最简单的一种IO模型. 其核心代码如下: bind(srvfd); listen(srvfd); for(;;) { clifd = accept(srvfd,...); //开始接受客户端来的连接 read(clifd,buf,...); //从客户端读取数据 dosomthingonbuf(buf); write(clifd,buf)//发送数据到客户端 } 上面的程序存在如下一些弊端: 1)如果没有客户端的连接请求,进程会阻塞在accept系统调用处