正则化项L1和L2的区别

https://blog.csdn.net/jinping_shi/article/details/52433975

https://blog.csdn.net/zouxy09/article/details/24971995

一、概括:

L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项。

二、区别:

  1.L1是模型各个参数的绝对值之和。

   L2是模型各个参数的平方和的开方值。

  2.L1会趋向于产生少量的特征,而其他的特征都是0.

    因为最优的参数值很大概率出现在坐标轴上,这样就会导致某一维的权重为0 ,产生稀疏权重矩阵

     L2会选择更多的特征,这些特征都会接近于0。

最优的参数值很小概率出现在坐标轴上,因此每一维的参数都不会是0。当最小化||w||时,就会使每一项趋近于0

三、再讨论几个问题

1.为什么参数越小代表模型越简单?

  越是复杂的模型,越是尝试对所有样本进行拟合,包括异常点。这就会造成在较小的区间中产生较大的波动,这个较大的波动也会反映在这个区间的导数比较大。

  只有越大的参数才可能产生较大的导数。因此参数越小,模型就越简单。

2.实现参数的稀疏有什么好处?

  因为参数的稀疏,在一定程度上实现了特征的选择。一般而言,大部分特征对模型是没有贡献的。这些没有用的特征虽然可以减少训练集上的误差,但是对测试集的样本,反而会产生干扰。稀疏参数的引入,可以将那些无用的特征的权重置为0.

3.L1范数和L2范数为什么可以避免过拟合?

  

  加入正则化项就是在原来目标函数的基础上加入了约束。当目标函数的等高线和L1,L2范数函数第一次相交时,得到最优解。

  L1范数:

  L1范数符合拉普拉斯分布,是不完全可微的。表现在图像上会有很多角出现。这些角和目标函数的接触机会远大于其他部分。就会造成最优值出现在坐标轴上,因此就会导致某一维的权重为0 ,产生稀疏权重矩阵,进而防止过拟合。

  L2范数:

  L2范数符合高斯分布,是完全可微的。和L1相比,图像上的棱角被圆滑了很多。一般最优值不会在坐标轴上出现。在最小化正则项时,可以是参数不断趋向于0.最后活的很小的参数。

  假设要求的参数为θθ,hθ(x)hθ(x)是我们的假设函数,那么线性回归的代价函数如下:

  

  那么在梯度下降法中,最终用于迭代计算参数θθ的迭代式为:

  

  如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子:

  

  每一次迭代,θj都要先乘以一个小于1的因子,从而使得θj不断减小,因此总得来看,θ是不断减小的。

原文地址:https://www.cnblogs.com/lyr2015/p/8718104.html

时间: 2024-10-08 16:19:03

正则化项L1和L2的区别的相关文章

正则化项L1和L2

L1和L2正则化项,又叫做惩罚项,是为了限制模型的参数,防止模型过你和而加在损失函数后面的一项. L1是模型的各个参数的绝对值之和 L2是模型各个参数的平方和的开方值 区别: L1会趋向于产生少量的特征,而其他的特征都是0. 从图形上理解:应为最优的参数值很大概率出现在坐标轴上,这样就导致某一维的权重为0,产生稀疏权重矩阵. 从贝叶斯的角度理解:加上正则化项L1,等同于对θ假设一个先验分布为拉普拉斯分布 L2会选择更对的特征,这些特征都会接近于0.最优参数值很小概率出现在坐标轴上,因为每一维的参

机器学习中正则化项L1和L2的直观理解

正则化(Regularization) 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作?1-norm和?2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和L2正则化可以看做是损失函数的惩罚项.对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归).下图是Python中Lasso回归的损失函数,式中加号后面一项α||w||1即为L1正则化项. 下图是Python中Ri

正则化方法:L1和L2 regularization、数据集扩增、dropout

本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深度学习算法中常用的正则化方法.(本文会不断补充) 正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程,网络在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大--因为训练出来的网络过拟合了训练集,对训练集外的数据却不work

正则化方法:L1和L2 regularization、数据集扩增、dropout(转)

ps:转的.当时主要是看到一个问题是L1 L2之间有何区别,当时对l1与l2的概念有些忘了,就百度了一下.看完这篇文章,看到那个对W减小,网络结构变得不那么复杂的解释之后,满脑子的6666-------->把网络权重W看做为对上一层神经元的一个WX+B的线性函数模拟一个曲线就好.知乎大神真的多. 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深度学习算

机器学习中的范数规则化 L0、L1与L2范数 核范数与规则项参数选择

http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 [email protected] http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显

L1 与 L2 正则化

参考这篇文章: https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc https://blog.csdn.net/jinping_shi/article/details/52433975 参考这篇文章: https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc https://blog.csdn.net/

l1和l2正则化

https://blog.csdn.net/tianguiyuyu/article/details/80438630 以上是莫烦对L1和L2的理解 l2正则:权重的平方和,也就是一个圆 l1正则:权重的绝对值之和,等价与一个正方形. 图中,正则项和损失项的交点就是最优解的位置,我们可以看到,在只有2个参数的情况下,l1倾向使得某个参数直接为0:l2倾向使得某些参数逼近0 再看下吴恩达的理解 正则化的意义:在于让高阶的参数逼近0,使其对拟合函数的贡献变小:可以看到theta3和theta4,我们给

L1与L2正则化

目录 过拟合 结构风险最小化原理 正则化 L2正则化 L1正则化 L1与L2正则化 参考链接 过拟合 机器学习中,如果参数过多.模型过于复杂,容易造成过拟合. 结构风险最小化原理 在经验风险最小化(训练误差最小化)的基础上,尽可能采用简单的模型,以提高模型泛化预测精度. 正则化 为了避免过拟合,最常用的一种方法是使用正则化,例如L1和L2正则化. 所谓的正则化,就是在原来损失函数的基础上,加了一些正则化项,或者叫做模型复杂度惩罚项. L2正则化 L2正则化即:\(L=E_{in}+\lambda

正则化L1和L2

基于距离的norm1和norm2 所谓正则化,就是在损失函数中增加范数,那么老调重弹一下,所谓范数是指空间向量的大小距离之和,那么范数有值单一向量而言的范数,其实所谓单点向量其实是指指定向量到原点的距离. d = Σ||xi||· 还有针对两个向量求距离的范数:那么作为距离,最常用到的就是马哈顿距离,这个距离也被称之为norm 1: 对于两个向量norm1的应用有两个: SAD(sum of absolution,绝对偏差和)= ||x1 - x2|| = Σ|x1 - x2| MAE(mean