bzoj 3622

直接算 $a_i>b_i$ 对数恰为 $k$ 的不好算

那么可以先算 $a_i>b_i$ 对数至少 $k$ 的

这个排序后随便dp一下就好

那么再除了一下

用 $f_i$ 表示 $a_i>b_i$ 对数至少i的方案数

用 $g_i$ 表示 $a_i>b_i$ 对数恰为i的方案数

那么 $g_i=f_i(n-i)!-\sum_{j=i+1}^n g_jC(j,i)$

其中,$(n-i)!$ 表示除了这 $i$ 个以外的所有元素的排列方式,$g_jC(j,i)$ 表示在 $j$ 个中任取 $i$ 个而多算的方案数

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a),i##_end=(b);i<=i##_end;++i)
#define For(i,a,b) for(int i=(a),i##_end=(b);i<i##_end;++i)
#define per(i,a,b) for(int i=(b),i##_st=(a);i>=i##_st;--i)
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define dbg(x) cerr<<#x" = "<<x<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define Es(x,i) for(Edge *i=G[x];i;i=i->nxt)
typedef long long ll;
typedef pair<int,int> pii;
const int inf=~0u>>1,mod=1e9+9;
char *TT,*mo,but[(1<<15)+2];
#define getchar() ((TT==mo&&(mo=((TT=but)+fread(but,1,1<<15,stdin)),TT==mo))?-1:*TT++)
inline int rd() {
    int x,c,f=1;while(!isdigit(c=getchar()))f=c!=‘-‘;x=c-‘0‘;
    while(isdigit(c=getchar()))x=x*10+c-‘0‘;return f?x:-x;
}
inline int pw(int n,int m){int r=1;for(;m;m>>=1,n=(ll)n*n%mod)if(m&1)r=(ll)r*n%mod;return r;}
const int N=2011;
int n,K;
int a[N],b[N];
int f[N][N];
int fac[N],fai[N];
inline int Init(){
	fac[0]=1;
	For(i,1,N)fac[i]=(ll)fac[i-1]*i%mod;
	fai[N-1]=pw(fac[N-1],mod-2);
	per(i,1,N-1)fai[i-1]=(ll)fai[i]*i%mod;
}
inline int C(int n,int m){return n<m?0:(ll)fac[n]*fai[m]%mod*fai[n-m]%mod;}
int g[N];
int main(){
#ifdef flukehn
	freopen("test.txt","r",stdin);
#endif
	n=rd(),K=rd();
	rep(i,1,n)a[i]=rd();
	rep(i,1,n)b[i]=rd();
	sort(a+1,a+n+1),sort(b+1,b+n+1);
	int t=0;
	f[0][0]=1;
	if(n+K&1){
        cout<<0<<endl;
        return 0;
    }else K=n+K>>1;
	rep(i,1,n){
		while(t<n&&b[t+1]<a[i])++t;
		f[i][0]=1;
		rep(j,1,i)if(t-j+1>=0){
			f[i][j]=(f[i-1][j]+(ll)f[i-1][j-1]*(t-j+1))%mod;
		}
	}
	Init();
	per(i,K,n){
		ll r=(ll)f[n][i]*fac[n-i];
		rep(j,i+1,n)r-=(ll)g[j]*C(j,i)%mod;
		g[i]=(r%mod+mod)%mod;
	}
	cout<<g[K]<<endl;
//	cerr<<clock()<<endl;
}

  

原文地址:https://www.cnblogs.com/limfc/p/8419474.html

时间: 2024-10-08 13:29:07

bzoj 3622的相关文章

BZOJ 3622(已经没有什么好害怕的了-Dp+容斥原理)

3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 7  Solved: 6 [Submit][Status] Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT Source 2014湖北省队互测week2 PS:本题的数据中能量互不相同. 1.我们计算出糖果>药片的组数=k 2.我们计算出f[

[BZOJ 3622]已经没有什么好害怕的了

世萌萌王都拿到了,已经没有什么好害怕的了——    (作死) 笑看哪里都有学姐,真是不知说什么好喵~ 话说此题是不是输 0 能骗不少分啊,不然若学姐赢了,那么有头的学姐还能叫学姐吗?  (作大死) 这题的数据就告诉我们这是赤裸裸的 dp ,不过要加个容斥而已 注意到我们可以算出一共需要 s 组满足糖果数 > 药片数 (在这里显然有个特判,即 n-k 为奇数时,答案一定为 0 ) 我们将两个读入的数组排序 令 next[i] 表示最大的 j 满足 糖果[i]>药片[j] 令 f[i][j] 表示

bzoj 3622 DP + 容斥

LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[i]大于b的组数. 不妨从整体去考虑,使用$f[n][j]$代表前n个中有j组$a[i]>b[i]$,很容易得到转移式$f[n][j]=f[n-1][j]+f[n-1][j-1]*(cnt[n]-(j-1))$,其中$cnt[i]$为比a[i]小的b[]个数 但是仔细思考该式子含义会发现,$f[n][j

[BZOJ 3622]已经没有什么好害怕的了(Dp+容斥原理)

Description 图片略 Solution 对啊,已经没有什么好害怕的了 没有头的麻美学姐还是很萌的(雾 排序预处理p[i]为b中小于a[i]的最大的数的标号 f[i][j]表示前i个糖果使得糖果大于药片的至少有j组 则f[i][j]=f[i-1][j]+f[i-1][j-1]*(p[i]-j+1) 容斥得g[j]=f[n][j]*(n-j)!-∑g[k]*C(j,k) (j+1<=k<=n) #include<iostream> #include<cstdio>

[BZOJ 3622] 已经没有什么好害怕的了 手动反演

题意 给定两个大小为 n 的集合 A = {a[1], a[2], ..., a[n]} , B = {b[1], b[2], ..., b[n]} , 元素两两不同. 定义 L(A) 为 A 生成的排列的集合. 给定 K , 求 $\sum_{X \in L(A), Y \in L(B)} [\sum_{k = 1} ^ n [X_k > Y_k] - \sum_{k = 1} ^ n [X_k < Y_k] = K]$ . 1 <= n <= 2000, 0 <= K &

BZOJ 3622 已经没有什么好害怕的了 动态规划+容斥原理

题目大意:给定两个长度为n个序列,保证这2n个数字两两不同,求有多少匹配满足a[i]>b[i]的数对数比a[i]<b[i]的数对数多k もう何も怖くない 题解:http://www.cnblogs.com/dyllalala/p/3900077.html OTZ 神思路根本就是想不到啊QAQ でも...もう何も怖くない...(大雾 此外我们可以引入一下WTY公式: C[i][j]=C[i-1][j]*C[i-1][j-1] ...脑残怎么治啊... #include <cstdio>

【bzoj 3622】已经没有什么好害怕的了

题目 看到这个数据范围就发现我们需要一个\(O(n^2)\)的做法了,那大概率是\(dp\)了 看到恰好\(k\)个我们就知道这基本是个容斥了 首先解方程发现我们需要使得\(a>b\)的恰好有\(\frac{n+k}{2}\)组 如果不整除我们直接输出\(0\)就好了 之后开始使用套路,直接广义容斥 \[ans=\sum_{i=k}^n(-1)^{i-k}\binom{i}{k}g_i\] \(g_i\)表配出至少\(i\)对\(a>b\)的情况 显然我们现在需要一个\(dp\)来算一下\(g

BZOJ 1013: [JSOI2008]球形空间产生器sphere

二次联通门 : BZOJ 1013: [JSOI2008]球形空间产生器sphere /* BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元 QAQ SB的我也能终于能秒题了啊 设球心的坐标为(x,y,z...) 那么就可以列n+1个方程,化化式子高斯消元即可 */ #include <cstdio> #include <iostream> #include <cstring> #define rg register #define Max

bzoj 3309 DZY Loves Math - 莫比乌斯反演 - 线性筛

对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b). Input 第一行一个数T,表示询问数. 接下来T行,每行两个数a,b,表示一个询问. Output 对于每一个询问,输出一行一个非负整数作为回答. Sample Input 4 7558588 9653114 6514903 445