牛顿法求极值

在机器学习课上,Doctor夏弥 在详解了梯度下降法之后,又给出了牛顿法来求极值。当时我们却是一脸懵的,回来温习时发现,这本该就是个高中知识,丢人丢到国外了哦!

如下图所示的曲线,我们需要求的是f(x)=的解:

而对于一脸懵的原因,我想是因为我们忘记了高中所学的点斜式,直接贴一张高中数学讲义:

因为我们一路沿着x轴去寻找解,所以迭代求f(x)=0的解得通用式为:

与梯度下降相比,牛顿法也同样是沿着曲线的斜率去寻找极值,但是不存在需要自定义learning rate的问题,因为alpha是由斜率来决定的。

原文地址:https://www.cnblogs.com/rhyswang/p/8343747.html

时间: 2024-10-11 20:08:51

牛顿法求极值的相关文章

hihoCoder #1142 : 三分求极值

#1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求点P到抛物线的最短距离d. 提示:三分法 输入 第1行:5个整数a,b,c,x,y.前三个数构成抛物线的参数,后两个数x,y表示P点坐标.-200≤a,b,c,x,y≤200 输出 第1行:1个实数d,保留3位小数(四舍五入) 样例输入 2 8 2 -2 6 样例输出 2.437

三分·三分求极值 算法讲解和题目

题目: #1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求点P到抛物线的最短距离d. 提示:三分法 输入 第1行:5个整数a,b,c,x,y.前三个数构成抛物线的参数,后两个数x,y表示P点坐标.-200≤a,b,c,x,y≤200 输出 第1行:1个实数d,保留3位小数(四舍五入) 样例输入 2 8 2 -2 6 样例输出 2

hiho一下 第四十周 题目1 : 三分·三分求极值

时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求点P到抛物线的最短距离d. 提示:三分法 × 提示:三分法 在之前的几周中我们了解到二分法作为分治中最常见的方法,适用于单调函数,逼近求解某点的值. 但当函数是凸形函数时,二分法就无法适用,这时就需要用到三分法. 从三分法的名字中我们可以猜到,三分法是对于需要逼近的区间做三等分: 我们发现lm这个点比rm要低,那

#1142 : 三分·三分求极值 ( 三分极值 )

#1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: [week40_1.PNG] 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求点P到抛物线的最短距离d. 提示:三分法 输入 第1行:5个整数a,b,c,x,y.前三个数构成抛物线的参数,后两个数x,y表示P点坐标.-200≤a,b,c,x,y≤200 输出 第1行:1个实数d,保留3位小数(四舍五入) 样例输入 2 8 2

牛顿法求平方根

求平方根的方法有很多种,这里介绍的是牛顿法求平方根. 方法是这样的:如果对x的平方根的值有了一个猜测y,那么就可以通过执行一个简单操作去得到一个更好的猜测:只需求出y和x/y的平均值(他更接近实际的平方根值) 代码实现: float sqrt(float x) { float guess = x; while (guess * guess - x > 0.0001) { guess = (guess + x / guess) / 2; } return guess; } 注:这一平方根算法实际上

三分·三分求极值

三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求点P到抛物线的最短距离d. 输入 第1行:5个整数a,b,c,x,y.前三个数构成抛物线的参数,后两个数x,y表示P点坐标.-200≤a,b,c,x,y≤200 输出 第1行:1个实数d,保留3位小数(四舍五入) 样例输入 2 8 2 -2 6 样例输出 2.437 #include <iostrea

Exercise 1.8 牛顿法求立方根

题目: Newton's method for cube roots is based on the fact that if y is an approximation to the cube root of x, then a better approximation is given by the value: (r/(y*y)+2*y)/3. Use this formula to implement a cube-root procedure analogous to the squa

算法练习之牛顿法求平方根

牛顿法求平方根公式:Xn+1 = 1/2 * (Xn+ a/Xn); 若求a的平方根,将公式进行迭代计算迭代越多,越接近结果最后Xn为a的平方根 代码实现: 参数:要求平方根的数,迭代次数 var sqrt = function (a,accur){ var pre = 1; for(var i = 0;i<accur;i++){ var cur = 1/2 * (pre + a/pre); pre = cur; } return cur; } console.log(sqrt(2,10000)

hihocoder 1142 三分求极值【三分算法 模板应用】

#1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求点P到抛物线的最短距离d. 提示:三分法 输入 第1行:5个整数a,b,c,x,y.前三个数构成抛物线的参数,后两个数x,y表示P点坐标.-200≤a,b,c,x,y≤200 输出 第1行:1个实数d,保留3位小数(四舍五入) 样例输入 2 8 2 -2 6 样例输出 2.437