Deep RL Bootcamp Lecture 5: Natural Policy Gradients, TRPO, PPO

https://statweb.stanford.edu/~owen/mc/Ch-var-is.pdf

https://zhuanlan.zhihu.com/p/29934206

blue curve is the lower bounded one

conjugate gradient to solve the optimization problem.

Fisher information matrix, natural policy gradient

To write down an optimization problem, we can solve more robustly with more sample efficiency to update policy

But Lis Lpg is not constrained, so we use KL to ...

it‘s hard to choose beta

TRPO is much worse than A3C on imaging game, where PPO does better

see the slide: limitations of TRPO

原文地址:https://www.cnblogs.com/ecoflex/p/8976876.html

时间: 2024-10-30 03:13:30

Deep RL Bootcamp Lecture 5: Natural Policy Gradients, TRPO, PPO的相关文章

Deep RL Bootcamp Lecture 2: Sampling-based Approximations and Function Fitting

原文地址:https://www.cnblogs.com/ecoflex/p/8973854.html

Deep RL Bootcamp Lecture 7: SVG, DDPG, and Stochastic Computation Graphs

^ is the square root of epsilon a simplified version of hard version a more smooth way to find correct solution the first term is the REINFORCE term, and the seconde term is our grad log probability of our loss b is a stochastic node        more form

Deep RL Bootcamp Frontiers Lecture I: Recent Advances,

high bias if the robot has learnt something (no changes appear with iterations) however, in the real world tasks, the task could change a little bit, then the robot will failed to generalize. no matter how well we train the robot in situations, there

Deep RL Bootcamp TAs Research Overview

model free: high variance. model based: high bias within 1h of human demonstration of each task, VR!!! 原文地址:https://www.cnblogs.com/ecoflex/p/8990885.html

Policy Gradients

这篇博客只是为了自己记录,思路比较跳跃. Policy Gradients 不估计局面的价值,转而预测选取每个动作的概率.因为某些游戏中我们可能会需要在相同的状态下做出随机行为,比如说某些资源有限的游戏,我们不可能一直在某一个地方一直获取资源. 更新函数是\(\theta_{t+1}=\theta_t + \alpha \cfrac{\partial J}{\partial \theta}\),其中\(J(\theta)\)是对当前参数产生的策略的评价,越高越好. \(J(\theta)\)中,

CS294-112 深度强化学习 秋季学期(伯克利)NO.4 Policy gradients introduction

green bar is the reward function, blue curve is the possibility of differenct trajectories if green bars are equally increased to yellow bars, the result will change! 原文地址:https://www.cnblogs.com/ecoflex/p/9085805.html

Tutorials on Inverse Reinforcement Learning

Tutorials on Inverse Reinforcement Learning 2018-07-22 21:44:39 1. Papers:  Inverse Reinforcement Learning: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.2178&rep=rep1&type=pdf Cooperative Inverse Reinforcement Learning: http://pape

(zhuan) 一些RL的文献(及笔记)

一些RL的文献(及笔记) copy from: https://zhuanlan.zhihu.com/p/25770890  Introductions Introduction to reinforcement learningIndex of /rowan/files/rl ICML Tutorials:http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf NIPS Tutorials:CS 294 Deep Reinforcement Lea

复现深度强化学习论文经验之谈

近期深度强化学习领域日新月异,其中最酷的一件事情莫过于 OpenAI 和 DeepMind 训练智能体接收人类的反馈而不是传统的奖励信号.本文作者认为复现论文是提升机器学习技能的最好方式之一,所以选择了 OpenAI 论文<Deep Reinforcement Learning from Human Preferences>作为 target,虽获得最后成功,却未实现初衷.如果你也打算复现强化学习论文,那么本文经验也许是你想要的.此外,本文虽对强化学习模型的训练提供了宝贵经验,同时也映射出另外