problem1 link
$f[i][j]$表示经过前$i$个怪物之后,花费$j$个硬币可以得到的最大值。
problem2 link
设$nim[i]$表示数字$i$的nim值。那么题目就是求有多少个区间$[L,R]$满足这个区间内所有数字的nim值的抑或不是0.通过记录前缀和的个数,可以$O(n)$计算得到。现在问题是计算每个值的nim值。
可以用数学归纳法证明$i$的nim值等于$i$中的质因子的个数,比如$nim[6]=2,nim[12]=3$等。所以对于给出的的区间$[L,R]$,只需要枚举$\sqrt{R}$之内的质数,判断$[L,R]$内哪些数字的质因子有该质数。
假设需要考虑的所有质数为$p_{1},p_{2},...,p_{m},n=R-L+1$,那么复杂度为$\sum_{i=1}^{m}\frac{n}{p_{i}}$
problem3 link
(1)首先考虑只有一个特殊点$A$,假设$A$为树根,那么只需要为每个点找到一个父节点即可,对于节点$i$来说,如果$j$满足$dist[i]<dist[j]$,那么$j$可以作为$i$的父节点。所以如果令$f[i]$表示可以作为$i$的父节点的节点数,那么答案为$\prod_{i=1}^{n}(1+f(i))$
(2)考虑有两个特殊点$A,B$,假设$B$为树根,令$i$为$AB$之间距离$B$最近的节点($i$有可能就是A),那么将从$i$开始以及A的子节点这些都叫做$A$分支,其他的除了$B$以外的节点都叫做其他分支。令$AB$之间的长度为$p$.那么一个节点$j$满足$dist[A]-dist[B]=p$时,它就在其他分支上,否则就在A分支上。那么其他分支其实就是一个特殊点的问题,而A分支可以看做$i$节点是新的$B$的两个特殊点的问题。
(3)现在考虑三个特殊点$ABC$。分两种情况:第一,存在一个节点$i$使得ABC在以$i$为根的三个分支上。现在所有除了$i$以外的点,要么在A,B,C中的一个分支上,要么在之外的分支上。比如,如果一个点$j$满足$A[j]-A[i]=B[j]-B[i]=C[j]-C[i]$,那么它就在其他分支上,如果$A[j]-A[i]=B[j]-B[i]\neq C[j]-C[i]$,那么它就在C分支上。这样其他分支上就是一个特殊点的问题,而A分支,B分支,C分支就是三个两个特殊点的问题($i$是两个特殊点问题中的$B$); 第二,如果ABC是一条链上的三个点,假设B在中间,那么现在B作为树根,每个节点要么在A分支,要么在C分支,要么在其他分支。这里需要首先确定AB和BC的长度,这里可以枚举节点$i$在其他分支,AB中间,BC之间,A分支上但是不是AB之间等情况来确定AB和BC的长度,这样就又转化成一个特殊点和两个特殊点的问题。
code for problem1
#include <vector> class MonstersValley { public: int minimumPrice(std::vector<long long> dread, std::vector<int> price) { const int n = static_cast<int>(dread.size()); std::vector<std::vector<long long>> f( n + 1, std::vector<long long>(n * 2 + 1, -1)); f[0][0] = 0; for (int i = 1; i <= n; ++i) { long long t = dread[i - 1]; int c = price[i - 1]; for (int j = 0; j <= 2 * i; ++j) { if (f[i - 1][j] != -1) { f[i][j + c] = std::max(f[i][j + c], f[i - 1][j] + t); if (f[i - 1][j] >= t) { f[i][j] = std::max(f[i][j], f[i - 1][j]); } } } } for (int i = 0; i <= n * 2; ++i) { if (f[n][i] != -1) { return i; } } return 0; } };
code for problem2
#include <chrono> #include <cmath> #include <iostream> #include <vector> class TheDivisionGame { public: long long countWinningIntervals(int L, int R) { std::vector<int> prime = ComputePrime(static_cast<int>(std::sqrt(R)) + 1); int n = R - L + 1; std::vector<int> value(n); std::vector<int> nim(n, 0); for (int i = 0; i < n; ++i) { value[i] = i + L; } for (size_t i = 0; i < prime.size() && prime[i] * prime[i] <= R; ++i) { int s = L; if (L % prime[i] != 0) { s += prime[i] - L % prime[i]; } while (s <= R) { while (value[s - L] % prime[i] == 0) { value[s - L] /= prime[i]; nim[s - L] += 1; } s += prime[i]; } } for (int i = 0; i < n; ++i) { if (value[i] != 1) { ++nim[i]; } } std::vector<int> num(32, 0); num[0] = 1; long long result = 0; for (int i = 0, prefix = 0; i < n; ++i) { prefix ^= nim[i]; result += i + 1 - num[prefix]; num[prefix] += 1; } return result; } private: std::vector<int> ComputePrime(int M) { std::vector<int> prime; std::vector<bool> tag(M + 1, false); for (int i = 2; i <= M; ++i) { if (!tag[i]) { prime.push_back(i); } for (size_t j = 0; j < prime.size() && prime[j] * i <= M; ++j) { tag[prime[j] * i] = true; if (i % prime[j] == 0) { break; } } } return prime; } };
code for problem3
#include <algorithm> #include <iostream> #include <set> #include <vector> class UnknownTree { static constexpr int mod = 1000000009; public: int getCount(std::vector<int> distancesA, std::vector<int> distancesB, std::vector<int> distancesC) { int result = 0; for (int i = 0; i < static_cast<int>(distancesA.size()); ++i) { Add(result, Compute(i, distancesA, distancesB, distancesC)); } Add(result, ComputeLine(distancesA, distancesB, distancesC)); Add(result, ComputeLine(distancesB, distancesA, distancesC)); Add(result, ComputeLine(distancesA, distancesC, distancesB)); return result; } private: void Add(int &x, int y) { x += y; if (x >= mod) { x -= mod; } } int Compute(int root, const std::vector<int> &A, const std::vector<int> &B, const std::vector<int> &C) { std::vector<int> other, set_a, set_b, set_c; std::vector<int> set_a_root, set_b_root, set_c_root; int n = static_cast<int>(A.size()); for (int i = 0; i < n; ++i) { if (i != root) { int da = A[i] - A[root]; int db = B[i] - B[root]; int dc = C[i] - C[root]; if (da > 0 && da == db && da == dc) { other.push_back(da); } else if (da > 0 && da == db) { set_c.push_back(C[i]); set_c_root.push_back(da); } else if (da > 0 && da == dc) { set_b.push_back(B[i]); set_b_root.push_back(da); } else if (db > 0 && db == dc) { set_a.push_back(A[i]); set_a_root.push_back(db); } else { return 0; } } } long long result = SolveCase1(other); result = result * SolveCase2(A[root], set_a_root, set_a) % mod; result = result * SolveCase2(B[root], set_b_root, set_b) % mod; result = result * SolveCase2(C[root], set_c_root, set_c) % mod; return static_cast<int>(result); } int ComputeLine(const std::vector<int> &A, const std::vector<int> &B, const std::vector<int> &C) { std::set<std::pair<int, int>> all; auto Insert = [&](int ab, int bc) { if (ab > 0 && bc > 0) { all.insert({ab, bc}); } }; int n = static_cast<int>(A.size()); for (int i = 0; i < n; ++i) { Insert(A[i] - B[i], C[i] - B[i]); Insert(A[i] + B[i], C[i] - B[i]); Insert(B[i] - A[i], C[i] - B[i]); Insert(A[i] - B[i], B[i] + C[i]); Insert(A[i] - B[i], B[i] - C[i]); } int result = 0; for (auto &e : all) { Add(result, ComputeLine(e.first, e.second, A, B, C)); } return result; } int ComputeLine(int ab, int bc, const std::vector<int> &A, const std::vector<int> &B, const std::vector<int> &C) { int n = static_cast<int>(A.size()); std::vector<int> other, set_a, set_c; std::vector<int> set_a_b, set_c_b; for (int i = 0; i < n; ++i) { if (A[i] - B[i] == ab && C[i] - B[i] == bc) { other.push_back(B[i]); } else if (A[i] - B[i] == ab && OnLater(bc, B[i], C[i])) { set_c.push_back(C[i]); set_c_b.push_back(B[i]); } else if (C[i] - B[i] == bc && OnLater(ab, B[i], A[i])) { set_a.push_back(A[i]); set_a_b.push_back(B[i]); } else { return 0; } } long long result = SolveCase1(other); result = result * SolveCase2(ab, set_a_b, set_a) % mod; result = result * SolveCase2(bc, set_c_b, set_c) % mod; return static_cast<int>(result); } bool OnLater(int d, int da, int db) { return (da + db == d) || (da - db == d) || (d > 1 && da + db > d); } int SolveCase1(const std::vector<int> &d) { int n = static_cast<int>(d.size()); long long result = 1; for (int i = 0; i < n; ++i) { int t = 1; for (int j = 0; j < n; ++j) { if (j != i && d[j] < d[i]) { ++t; } } result = result * t % mod; } return static_cast<int>(result); } int SolveCase2(int ab, const std::vector<int> &B, std::vector<int> &A) { int n = static_cast<int>(B.size()); if (n == 0) { return 1; } std::vector<int> set_b, set_a_middle, set_a_other; int middle_branch = 0; for (int i = 0; i < n; ++i) { if (B[i] + ab == A[i]) { set_b.push_back(B[i]); } else { if (B[i] + A[i] < ab) { return 0; } else if (B[i] + A[i] == ab) { set_a_middle.push_back(B[i]); } else if (B[i] - A[i] == ab) { set_a_other.push_back(A[i]); } else if (B[i] + A[i] > ab) { ++middle_branch; } else { return 0; } } } long long result = SolveCase1(set_b); if (set_a_middle.size() == 0) { if (middle_branch != 0) { return 0; } result = result * SolveCase1(set_a_other) % mod; return static_cast<int>(result); } std::sort(set_a_middle.begin(), set_a_middle.end()); int m = static_cast<int>(set_a_middle.size()); for (int i = 0; i + 1 < m; ++i) { if (set_a_middle[i] == set_a_middle[i + 1]) { return 0; } } int delta = set_a_middle[0]; if (delta >= ab) { return 0; } std::vector<int> d_set_a, d_set_b; for (int i = 0; i < n; ++i) { if (B[i] + ab != A[i]) { if (B[i] + A[i] == ab) { if (B[i] != delta) { d_set_b.push_back(B[i] - delta); d_set_a.push_back(A[i]); } } else { if (B[i] <= delta) { return 0; } d_set_b.push_back(B[i] - delta); d_set_a.push_back(A[i]); } } } result = result * SolveCase2(ab - delta, d_set_b, d_set_a) % mod; return static_cast<int>(result); } };
原文地址:https://www.cnblogs.com/jianglangcaijin/p/9043276.html