如何用简单易懂的例子解释隐马尔可夫模型?

如何用简单易懂的例子解释隐马尔可夫模型?的相关文章

一文搞懂HMM(隐马尔可夫模型)

本文转自于:http://www.cnblogs.com/skyme/p/4651331.html 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程.其难点是从可观察的参数中确定该过程的隐含参数.然后利用这些参数来作进一步的分析,例如模式识别. 是在被建模的系统被认为是一个马尔可夫过程与未观测到的(隐藏的)的状态的统计马尔可夫模型. 下面用一个简单的例子来阐述: 假设我手里有三个不同的骰子.第一个骰子是我们平常见的骰子(称这

隐马尔可夫模型(HMM:Hidden Markov Models)

理论部分转载自:http://blog.csdn.net/likelet/article/details/7056068 手动计算例子转载自:http://blog.sina.com.cn/s/blog_953f8a550100zh35.html 隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直

隐马尔科夫模型python实现简单拼音输入法

在网上看到一篇关于隐马尔科夫模型的介绍,觉得简直不能再神奇,又在网上找到大神的一篇关于如何用隐马尔可夫模型实现中文拼音输入的博客,无奈大神没给可以运行的代码,只能纯手动网上找到了结巴分词的词库,根据此训练得出隐马尔科夫模型,用维特比算法实现了一个简单的拼音输入法.githuh地址:https://github.com/LiuRoy/Pinyin_Demo 原理简介 隐马尔科夫模型 抄一段网上的定义: 隐马尔可夫模型 (Hidden Markov Model) 是一种统计模型,用来描述一个含有隐含

隐马尔科夫模型(HMM)

HMM简介 HMM用于研究非确定性生成模式,HMM是一个与时间无关的模型(有待改进),并且n阶HMM模型是指下一个状态只与前n个有关,通常只研究一阶HMM模型(有待改进).从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步的分析,例如模式识别. 下面可以使用一个案例来解释HMM模型. 假设有三种色子,分别是标有123456的立方体.标有1234的三菱锥.标有12345678的八面体.它们分别记为D6.D4.D8,假设我们从三个色子中任意挑一个色子的概率为1/3,然后我们可以随意掷色

基于隐马尔可夫模型的有监督词性标注

代码下载:基于隐马尔可夫模型的有监督词性标注 词性标注(Part-of-Speech tagging 或 POS tagging)是指对于句子中的每个词都指派一个合适的词性,也就是要确定每个词是名词.动词.形容词或其他词性的过程,又称词类标注或者简称标注.词性标注是自然语言处理中的一项基础任务,在语音识别.信息检索及自然语言处理的许多领域都发挥着重要的作用. 词性标注本质上是一个分类问题,对于句子中的每一个单词W,找到一个合适的词类类别T,也就是词性标记,不过词性标注考虑的是整体标记的好坏,既整

隐马尔可夫模型(一)

隐马尔可夫模型 隐马尔可夫模型(Hidden Markov Model,HMM)是一种统计模型,广泛应用在语音识别,词性自动标注,音字转换,概率文法等各个自然语言处理等应用领域.经过长期发展,尤其是在语音识别中的成功应用,使它成为一种通用的统计工具. 马尔可夫过程 先来看一个例子.假设几个月大的宝宝每天做三件事:玩(兴奋状态).吃(饥饿状态).睡(困倦状态),这三件事按下图所示的方向转移: 这就是一个简单的马尔可夫过程.需要注意的是,这和确定性系统不同,每个转移都是有概率的,宝宝的状态是经常变化

维特比算法在隐马尔可夫模型中的应用

前言 文章标题的两个概念也许对于许多同学们来说都相对比较陌生,都比较偏向于于理论方面的知识,但是这个算法非常的强大,在很多方面都会存在他的影子.2个概念,1个维特比算法,1个隐马尔可夫模型.你很难想象,输入法的设计也会用到其中的一些知识. HMM-隐马尔可夫模型 隐马尔可夫模型如果真的要展开来讲,那短短的一篇文章当然无法阐述的清,所以我会以最简单的方式解释.隐马尔可夫模型简称HMM,根据百度百科中的描述,隐马尔可夫模型描述的是一个含有隐含未知参数的马尔可夫模型.模型的本质是从观察的参数中获取隐含

隐马尔可夫模型(二)——隐马尔可夫模型的构成(转载)

在马尔可夫模型中,每一个状态都是可观察的序列,是状态关于时间的随机过程,也成为可视马尔可夫模型(Visible Markov Model,VMM).隐马尔科夫模型(Hidden Markov Model,HMM)中的状态是不可见的,我们可以看到的是状态表现出来的观察值和状态的概率函数.在隐马模型中,观察值是关于状态的随机过程,而状态是关于时间的随机过程,因此隐马模型是一个双重随机过程. 当考虑潜在事件随机生成表面事件时,可以用HMM解决. 举个例子,说明隐马模型: 有4个暗箱,放在暗处,每个箱子

HMM隐马尔科夫模型

马尔科夫过程 在概率论及统计学中,马尔可夫过程(英语:Markov process)是一个具备了马尔可夫性质的随机过程,因为俄国数学家安德雷·马尔可夫得名.马尔可夫过程是不具备记忆特质的(memorylessness).换言之,马尔可夫过程的条件概率仅仅与系统的当前状态相关,而与它的过去历史或未来状态,都是独立.不相关的. 一个马尔科夫过程是状态间的转移仅依赖于前n个状态的过程.这个过程被称之为n阶马尔科夫模型,其中n是影响下一个状态选择的(前)n个状态.最简单的马尔科夫过程是一阶模型,它的状态