hdu 1394 Minimum Inversion Number 线段树

Problem Description

The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.

Input

The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.

Output

For each case, output the minimum inversion number on a single line.

Sample Input

10
1 3 6 9 0 8 5 7 4 2

Sample Output

16

求逆序数的最小值

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <algorithm>
 4 using namespace std;
 5 const int maxn=5010;
 6 int sum[maxn<<2];
 7 void push_up(int rt)
 8 {
 9     sum[rt]=sum[rt<<1]+sum[rt<<1 | 1];
10 }
11 void build(int rt,int first,int end)
12 {
13      sum[rt]=0;
14     if(first==end)
15         return ;
16     int mid=(first+end)>>1;
17     build(rt<<1,first,mid);
18     build(rt<<1 | 1,mid+1,end);
19 }
20 int quary(int rt,int first,int end,int left,int right)
21 {
22     if(left<=first && right>=end)
23         return sum[rt];
24     int mid=(first+end)>>1;
25     int ans=0;
26     if(left<=mid)
27         ans+=quary(rt<<1,first,mid,left,right);
28     if(right>mid)
29         ans+=quary(rt<<1 | 1,mid+1,end,left,right);
30     return ans;
31 }
32 void update(int rt,int first,int end,int a)
33 {
34     if(first==end)
35     {
36         sum[rt]++;
37         return ;
38     }
39     int mid=(first+end)>>1;
40     if(a<=mid)
41         update(rt<<1,first,mid,a);
42     else
43         update(rt<<1 | 1,mid+1,end,a);
44         push_up(rt);
45 }
46 int a[maxn];
47 int main()
48 {
49     int n;
50     while(cin>>n)
51     {
52         build(1,0,n-1);
53         int sum=0;
54         for(int i=0;i<n;i++)
55         {
56              cin>>a[i];
57              sum+=quary(1,0,n-1,a[i],n-1);
58              update(1,0,n-1,a[i]);
59         }
60         int ans=sum;
61         for(int i=0;i<n;i++)
62         {
63             sum+=n-a[i]-a[i]-1;
64             ans=min(ans,sum);
65         }
66         cout<<ans<<endl;
67     }
68     return 0;
69 }

时间: 2024-10-09 23:12:25

hdu 1394 Minimum Inversion Number 线段树的相关文章

hdu 1394 Minimum Inversion Number 线段树 点更新

// hdu 1394 Minimum Inversion Number 线段树 点更新 // // 典型线段树的单点更新 // // 对于求逆序数,刚开始还真的是很年轻啊,裸的按照冒泡排序 // 求出最初始的逆序数,然后按照公式递推,结果就呵呵了 // // 发现大牛都是用线段树和树状数组之类的做的,而自己又在学 // 线段树,所以就敲了线段树. // // 线段树的节点保存一段区间( L,R )内0,1...n一共出现了多少个. // 因为每个数是0,1,2...n-1且没有重复的数字. /

HDU 1394 Minimum Inversion Number.(线段树)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 ~~~~ 早起一发线段树,开心又快乐.这题暴力也能水过,同时线段树的效率也就体现的尤为明显了,看了大牛的博客,说是还可以用树状数组,点树和合并序列写,现在还不懂,留着以后在写吧. ~~~~ 大致题意:给定一个数字序列,同时由此可以得到n个序列, 要求从n个序列中找到逆序数最小的序列,输出最小逆序数. 首先介绍下逆序数的概念: 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面

HDU 1394 Minimum Inversion Number (线段树,单点更新)

C - Minimum Inversion Number Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 1394 Appoint description: System Crawler (2015-08-17) Description The inversio

Hdu 1394 Minimum Inversion Number(线段树或树状数组)

Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 11981    Accepted Submission(s): 7321 Problem Description The inversion number of a given number sequence a1, a2, ..., a

HDU 1394 Minimum Inversion Number (线段树,暴力)

Description The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj. For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seq

hdu - 1394 Minimum Inversion Number(线段树水题)

http://acm.hdu.edu.cn/showproblem.php?pid=1394 很基础的线段树. 先查询在更新,如果后面的数比前面的数小肯定会查询到前面已经更新过的值,这时候返回的sum就是当前数的逆序数. 这样查询完之后得到初始数列的逆序数,要求得所有序列的最小逆序数,还需要循环一次. 设初始序列abcde中逆序数为k,小于a的个数是t-1那么大于a的个数就是n-t,当把a左移一位,原来比a大的都变成了a的逆序对,即逆序数增加了n-t,但是原来比a小的数都变成了顺序, 因此逆序数

hdu 1394 Minimum Inversion Number (裸树状数组 求逆序数)

题目链接 题意: 给一个n个数的序列a1, a2, ..., an ,这些数的范围是0-n-1, 可以把前面m个数移动到后面去,形成新序列:a1, a2, ..., an-1, an (where m = 0 - the initial seqence)a2, a3, ..., an, a1 (where m = 1)a3, a4, ..., an, a1, a2 (where m = 2)...an, a1, a2, ..., an-1 (where m = n-1)求这些序列中,逆序数最少的

HDU 1394 Minimum Inversion Number(树状数组||线段树)

题目链接:点击打开链接 对于求逆序数的问题, 通常用线段树或者树状数组来维护, 树状数组代码短,好写, 还是尽量写树状数组吧. 首先求出原始排列的逆序数,  那么对于每一次操作, 因为都是将当前排列的第一个数拿到最后一个位置, 所以答案就增加了所有比他大的数字个数,减小了所有比他小的数字个数. 细节参见代码: #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #

hdu 1394 Minimum Inversion Number(树状数组)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 题意:给你一个0 — n-1的排列,对于这个排列你可以将第一个元素放到最后一个,问你可能得到的最多逆序对的个数 求出原始序列的逆序对的数目,然后进行n-1次将第一个元素放到最后一个的操作,每次操作后可以用O(1)复杂度求得新序列的逆序对数目 此题的关键点在于求出原始序列逆序对的数目,可以使用树状数组, 线段树, 归并等方法. 下面是树状数组的解法 #include <iostream> #i