Different GCD Subarray Query
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 221 Accepted Submission(s): 58
Problem Description
This is a simple problem. The teacher gives Bob a list of problems about GCD (Greatest Common Divisor). After studying some of them, Bob thinks that GCD is so interesting. One day, he comes up with a new problem about GCD. Easy as it looks, Bob cannot figure it out himself. Now he turns to you for help, and here is the problem:
Given an array a of N positive integers a1,a2,?aN−1,aN; a subarray of a is defined as a continuous interval between a1 and aN. In other words, ai,ai+1,?,aj−1,aj is a subarray of a, for 1≤i≤j≤N. For a query in the form (L,R), tell the number of different GCDs contributed by all subarrays of the interval [L,R].
Input
There are several tests, process till the end of input.
For each test, the first line consists of two integers N and Q, denoting the length of the array and the number of queries, respectively. N positive integers are listed in the second line, followed by Q lines each containing two integers L,R for a query.
You can assume that
1≤N,Q≤100000
1≤ai≤1000000
Output
For each query, output the answer in one line.
Sample Input
5 3
1 3 4 6 9
3 5
2 5
1 5
Sample Output
6
6
6
/* hdu 5869 区间不同GCD个数(树状数组) problem: 给你一组数, 然后是q个查询. 问[l,r]中所有区间GCD的值总共有多少个(不同的) solve: 感觉很像线段树/树状数组. 因为有很多题都是枚举从小到大处理查询的r. 这样的话就只需要维护[1,i]的情况 最开始用的set记录生成的gcd然后递推, 超时了. 因为区间gcd是有单调性的. (i-1->1)和i区间gcd是递减的. 而且用RMQ可以O(1)的查询[i,j]gcd的值.如果枚举[1,i-1]感觉很麻烦.所以用二分跳过中间gcd值相同的部分,即查询与i的区间gcd值为x的 最左边端点. 因为要求不同的值, 这让我想到了用线段树求[l,r]中不同数的个数(忘了是哪道题了 zz) 就i而言,首先找出最靠近i的位置使gcd的值为x. 然后和以前的位置作比较. 尽可能的维护这个位置靠右. 假设: [3,i-1]的gcd为3,[2,i]的gcd为3. 那么在位置3上面加1.因为只要[l,i]包含这个点,那么就会有3这个值. hhh-2016-09-10 19:01:57 */ #include <algorithm> #include <iostream> #include <cstdlib> #include <stdio.h> #include <cstring> #include <vector> #include <math.h> #include <queue> #include <set> #include <map> #define ll long long using namespace std; const int maxn = 100100; int a[maxn]; map<ll,int>mp; struct node { int l,r; int id; } p[maxn]; bool tocmp(node a,node b) { if(a.r != b.r) return a.r < b.r; if(a.l != b.l) return a.l < b.l; } ll Gcd(ll a,ll b) { if(b==0) return a; else return Gcd(b,a%b); } int lowbit(int x) { return x&(-x); } ll out[maxn]; ll siz[maxn]; int n; void add(int x,ll val) { if(x <= 0) return ; while(x <= n) { siz[x] += val; x += lowbit(x); } } ll sum(int x) { if(x <=0) return 0; ll cnt = 0; while(x > 0) { cnt += siz[x]; x -= lowbit(x); } return cnt; } int dp[maxn][40]; int m[maxn]; int RMQ(int x,int y) { int t = m[y-x+1]; return Gcd(dp[x][t],dp[y-(1<<t)+1][t]); } void iniRMQ(int n,int c[]) { m[0] = -1; for(int i = 1; i <= n; i++) { m[i] = ((i&(i-1)) == 0)? m[i-1]+1:m[i-1]; dp[i][0] = c[i]; } for(int j = 1; j <= m[n]; j++) { for(int i = 1; i+(1<<j)-1 <= n; i++) dp[i][j] = Gcd(dp[i][j-1],dp[i+(1<<(j-1))][j-1]); } } void init() { mp.clear(); memset(siz,0,sizeof(siz)); iniRMQ(n,a); } int main() { int qry; while(scanf("%d",&n) != EOF) { scanf("%d",&qry); for(int i = 1; i<=n; i++) { scanf("%d",&a[i]); } init(); for(int i = 0; i < qry; i++) { scanf("%d",&p[i].l),scanf("%d",&p[i].r),p[i].id = i; } int ta = 0; sort(p, p+qry, tocmp); for(int i = 1; i <= n; i++) { int thea = a[i]; int j = i; while(j >= 1) { int tmid = j; int l = 1,r = j; while(l <= r) { int mid = (l+r) >> 1; if(l == r && RMQ(mid,i) == thea) { tmid = mid; break; } if(RMQ(mid,i) == thea) r = mid-1,tmid = mid; else l = mid+1; } if(!mp[thea]) add(j,1); else if(mp[thea] < j && mp[thea]) { add(mp[thea],-1); add(j,1); } mp[thea] = j; j = tmid-1; if(j >= 1) thea = RMQ(j,i); } while(ta < qry && p[ta].r == i) { out[p[ta].id] = sum(p[ta].r) - sum(p[ta].l-1); ta++; } } for(int i = 0; i < qry; i++) printf("%I64d\n",out[i]); } return 0; }