Redis几个认识误区

前几天微博发生了一起大的系统故障,很多技术的朋友都比较关心,其中的原因不会超出James Hamilton在On Designing and Deploying Internet-Scale Service(1)概括的那几个范围,James第一条经验“Design for failure”是所有互联网架构成功的一个关键。互联网系统的工程理论其实非常简单,James paper中内容几乎称不上理论,而是多条实践经验分享,每个公司对这些经验的理解及执行力决定了架构成败。

题外话说完,最近又研究了Redis。去年曾做过一个MemcacheDB, Tokyo Tyrant, Redis performance test,到目前为止,这个benchmark结果依然有效。这1年我们经历了很多眼花缭乱的key value存储产品的诱惑,从Cassandra的淡出(Twitter暂停在主业务使用)到HBase的兴起(Facebook新的邮箱业务选用 HBase(2)),当再回头再去看Redis,发现这个只有1万多行源代码的程序充满了神奇及大量未经挖掘的特性。Redis性能惊人,国内前十大网站的子产品估计用1台Redis就可以满足存储及Cache的需求。除了性能印象之外,业界其实普遍对Redis的认识存在一定误区。本文提出一些观点供大家探讨。

1. Redis是什么

这个问题的结果影响了我们怎么用Redis。如果你认为Redis是一个key value store, 那可能会用它来代替MySQL;如果认为它是一个可以持久化的cache, 可能只是它保存一些频繁访问的临时数据。Redis是REmote DIctionary Server的缩写,在Redis在官方网站的的副标题是A persistent key-value database with built-in net interface written in ANSI-C for Posix systems,这个定义偏向key value store。还有一些看法则认为Redis是一个memory database,因为它的高性能都是基于内存操作的基础。另外一些人则认为Redis是一个data structure server,因为Redis支持复杂的数据特性,比如List, Set等。对Redis的作用的不同解读决定了你对Redis的使用方式。

互联网数据目前基本使用两种方式来存储,关系数据库或者key value。但是这些互联网业务本身并不属于这两种数据类型,比如用户在社会化平台中的关系,它是一个list,如果要用关系数据库存储就需要转换成一种多行记录的形式,这种形式存在很多冗余数据,每一行需要存储一些重复信息。如果用key value存储则修改和删除比较麻烦,需要将全部数据读出再写入。Redis在内存中设计了各种数据类型,让业务能够高速原子的访问这些数据结构,并且不需要关心持久存储的问题,从架构上解决了前面两种存储需要走一些弯路的问题。

2. Redis不可能比Memcache快

很多开发者都认为Redis不可能比Memcached快,Memcached完全基于内存,而Redis具有持久化保存特性,即使是异步的,Redis也不可能比Memcached快。但是测试结果基本是Redis占绝对优势。一直在思考这个原因,目前想到的原因有这几方面。

  • Libevent。和 Memcached不同,Redis并没有选择libevent。Libevent为了迎合通用性造成代码庞大(目前Redis代码还不到 libevent的1/3)及牺牲了在特定平台的不少性能。Redis用libevent中两个文件修改实现了自己的epoll event loop(4)。业界不少开发者也建议Redis使用另外一个libevent高性能替代libev,但是作者还是坚持Redis应该小巧并去依赖的思路。一个印象深刻的细节是编译Redis之前并不需要执行./configure。
  • CAS问题。CAS是Memcached中比较方便的一种防止竞争修改资源的方法。CAS实现需要为每个cache key设置一个隐藏的cas token,cas相当value版本号,每次set会token需要递增,因此带来CPU和内存的双重开销,虽然这些开销很小,但是到单机10G+ cache以及QPS上万之后这些开销就会给双方相对带来一些细微性能差别(5)。
3. 单台Redis的存放数据必须比物理内存小

Redis的数据全部放在内存带来了高速的性能,但是也带来一些不合理之处。比如一个中型网站有100万注册用户,如果这些资料要用Redis来存储,内存的容量必须能够容纳这100万用户。但是业务实际情况是100万用户只有5万活跃用户,1周来访问过1次的也只有15万用户,因此全部100万用户的数据都放在内存有不合理之处,RAM需要为冷数据买单。

这跟操作系统非常相似,操作系统所有应用访问的数据都在内存,但是如果物理内存容纳不下新的数据,操作系统会智能将部分长期没有访问的数据交换到磁盘,为新的应用留出空间。现代操作系统给应用提供的并不是物理内存,而是虚拟内存(Virtual Memory)的概念。

基于相同的考虑,Redis 2.0也增加了VM特性。让Redis数据容量突破了物理内存的限制。并实现了数据冷热分离。

4. Redis的VM实现是重复造轮子

Redis的VM依照之前的epoll实现思路依旧是自己实现。但是在前面操作系统的介绍提到OS也可以自动帮程序实现冷热数据分离,Redis只需要OS申请一块大内存,OS会自动将热数据放入物理内存,冷数据交换到硬盘,另外一个知名的“理解了现代操作系统(3)”的Varnish就是这样实现,也取得了非常成功的效果。

作者antirez在解释为什么要自己实现VM中提到几个原因(6)。主要OS的VM换入换出是基于Page概念,比如OS VM1个Page是4K, 4K中只要还有一个元素即使只有1个字节被访问,这个页也不会被SWAP, 换入也同样道理,读到一个字节可能会换入4K无用的内存。而Redis自己实现则可以达到控制换入的粒度。另外访问操作系统SWAP内存区域时block 进程,也是导致Redis要自己实现VM原因之一。

5. 用get/set方式使用Redis

作为一个key value存在,很多开发者自然的使用set/get方式来使用Redis,实际上这并不是最优化的使用方法。尤其在未启用VM情况下,Redis全部数据需要放入内存,节约内存尤其重要。

假如一个key-value单元需要最小占用512字节,即使只存一个字节也占了512字节。这时候就有一个设计模式,可以把key复用,几个key-value放入一个key中,value再作为一个set存入,这样同样512字节就会存放10-100倍的容量。

这就是为了节约内存,建议使用hashset而不是set/get的方式来使用Redis,详细方法见参考文献(7)。

6. 使用aof代替snapshot

Redis有两种存储方式,默认是snapshot方式,实现方法是定时将内存的快照(snapshot)持久化到硬盘,这种方法缺点是持久化之后如果出现crash则会丢失一段数据。因此在完美主义者的推动下作者增加了aof方式。aof即append only mode,在写入内存数据的同时将操作命令保存到日志文件,在一个并发更改上万的系统中,命令日志是一个非常庞大的数据,管理维护成本非常高,恢复重建时间会非常长,这样导致失去aof高可用性本意。另外更重要的是Redis是一个内存数据结构模型,所有的优势都是建立在对内存复杂数据结构高效的原子操作上,这样就看出aof是一个非常不协调的部分。

其实aof目的主要是数据可靠性及高可用性,在Redis中有另外一种方法来达到目的:Replication。由于Redis的高性能,复制基本没有延迟。这样达到了防止单点故障及实现了高可用。

小结

要想成功使用一种产品,我们需要深入了解它的特性。Redis性能突出,如果能够熟练的驾驭,对国内很多大型应用具有很大帮助。希望更多同行加入到Redis使用及代码研究行列。

参考文献
  1. On Designing and Deploying Internet-Scale Service(PDF)
  2. Facebook’s New Real-Time Messaging System: HBase To Store 135+ Billion Messages A Month
  3. What’s wrong with 1975 programming
  4. Linux epoll is now supported(Google Groups)
  5. CAS and why I don’t want to add it to Redis(Google Groups)
  6. Plans for Virtual Memory(Google Groups)
  7. Full of keys(Salvatore antirez Sanfilippo)

-EOF-
上一篇博文多IDC数据时序问题及方法论在新浪微博上面有更多讨论及留言,有兴趣可以去围观。http://t.sina.com.cn/10503/zF0tex7z7b(需登录)

时间: 2024-10-10 15:53:29

Redis几个认识误区的相关文章

Redis几个认识误区(转)

原文:Redis几个认识误区 前几天微博发生了一起大的系统故障,很多技术的朋友都比较关心,其中的原因不会超出James Hamilton在On Designing and Deploying Internet-Scale Service(1)概括的那几个范围,James第一条经验“Design for failure”是所有互联网架构成功的一个关键.互联网系统的工程理论其实非常简单,James paper中内容几乎称不上理论,而是多条实践经验分享,每个公司对这些经验的理解及执行力决定了架构成败.

(5)Redis几个认识误区

前几天微博发生了一起大的系统故障,很多技术的朋友都比较关心,其中的原因不会超出James Hamilton在On Designing and Deploying Internet-Scale Service(1)概括的那几个范围,James第一条经验“Design for failure”是所有互联网架构成功的一个关键.互联网系统的工程理论其实非常简单,James paper中内容几乎称不上理论,而是多条实践经验分享,每个公司对这些经验的理解及执行力决定了架构成败. 题外话说完,最近又研究了Re

Redis的bind的误区(转)

原文1:https://blog.csdn.net/cw_hello1/article/details/83444013 原文2:https://www.cnblogs.com/suiyueqiannian/p/7808190.html 注:原文2中评论区说的bind 0.0.0.0安全问题,应该是说绑定为0.0.0.0后所有ip都能访问,不安全,安全的做法是限制本机访问和内网访问,而限制公网访问 原文地址:https://www.cnblogs.com/olivertian/p/1098411

NoSQL and Redis

转自:http://www.cnblogs.com/fxjwind/archive/2011/12/10/2283344.html 首先谈谈为什么需要NoSQL? 这儿看到一篇blog说的不错http://robbin.iteye.com/blog/524977, 摘录一下 首先是面对Web2.0网站, 出现的3高问题, 1.High performance - 对数据库高并发读写的需求 web2.0网站要根据用户个性化信息来实时生成动态页面和提供动态信息,所以基本上无法使用动态页面静态化技术,

Redis资料汇总专题(转)

原文:Redis资料汇总专题 很多朋友反映,说NoSQLFan上的资料不少,但是要找到自己实用的太难,于是萌生做这样一个专题的想法.通过将不同NoSQL产品从入门到精通的各种资料进行汇总,希望能够让大家更快的找到适合自己的教程或文章进行阅读. 最后更新时间:2013-04-22 1.Redis是什么? 十五分钟介绍 Redis数据结构 Redis系统性介绍 一个很棒的Redis介绍PPT 强烈推荐!非同一般的Redis介绍 Redis之七种武器 锋利的Redis redis 适用场景与实现 [翻

redis资料汇总

redis资源比较零散,引用nosqlfan上的文章,方便大家需要时翻阅.大家看完所有的,如果整理出文章的,麻烦知会一下,方便学习. 1.Redis是什么? 十五分钟介绍 Redis数据结构 Redis系统性介绍 一个很棒的Redis介绍PPT 强烈推荐!非同一般的Redis介绍 Redis之七种武器 锋利的Redis redis 适用场景与实现 [翻译]Redis协议 2.Redis内部实现 Redis源码分析系列文章 Redis运行流程源码解析 Redis 2.6 Lua 脚本功能实现分析

[转载] Redis资料汇总专题

转载自http://www.cnblogs.com/tommyli/archive/2011/12/14/2287614.html 1.Redis是什么? 十五分钟介绍 Redis数据结构 Redis系统性介绍 一个很棒的Redis介绍PPT 强烈推荐!非同一般的Redis介绍 Redis之七种武器 锋利的Redis redis 适用场景与实现 2.Redis内部实现 Redis源码分析系列文章 深入Redis内部-Redis 源码讲解 redis源码分析-如何rehash Redis源码分析-

C#中使用Redis不同数据结构的内存占有量的疑问和对比测试

最近在大量使用Redis来进行数据统计前的清洗和整理,每天的数据量超5千万+,在开发过程中,数据量小,着重注意业务规则的处理,在上线基本测试后发现了大量的问题,其中之一就是Redis存储数据过多,内存的使用量大大增加.进过简单分析,对存储非常频繁的实体类进行了改进,字段名字进行缩写处理,一下子就减少了很多内存使用量.在对Redis的研究过程中,发现了以下这篇文章:Redis上踩过的一些坑-美团 ,发现其中 有一节内容:“四.redis内存使用优化 ”,对Redis不同的存储结构的使用量进行了对比

Redis 5种数据结构使用及注意事项

1优缺点 非常非常的快,有测评说比Memcached还快(当大家都是单CPU的时候),而且是无短板的快,读写都一般的快,所有API都差不多快,也没有MySQL Cluster.MongoDB那样更新同一条记录如Counter时慢下去的毛病. 丰富的数据结构,超越了一般的Key-Value数据库而被认为是一个数据结构服务器.组合各种结构,限制Redis用途的是你自己的想象力,作者自己捉刀写的用途入门. 因为是个人作品,Redis目前只有2.3万行代码,Keep it simple的死硬做法,使得普