经典算法题每日演练——第六题 协同推荐SlopeOne 算法

原文:经典算法题每日演练——第六题 协同推荐SlopeOne 算法

相信大家对如下的Category都很熟悉,很多网站都有类似如下的功能,“商品推荐”,"猜你喜欢“,在实体店中我们有导购来为我们服务,在网络上

我们需要同样的一种替代物,如果简简单单的在数据库里面去捞,去比较,几乎是完成不了的,这时我们就需要一种协同推荐算法,来高效的推荐浏览者喜

欢的商品。

一:概念

SlopeOne的思想很简单,就是用均值化的思想来掩盖个体的打分差异,举个例子说明一下:

在这个图中,系统该如何计算“王五“对”电冰箱“的打分值呢?刚才我们也说了,slopeone是采用均值化的思想,也就是:R王五 =4-{[(5-10)+(4-5)]/2}=7 。

下面我们看看多于两项的商品,如何计算打分值。

rb = (n * (ra - R(A->B)) + m * (rc - R(C->B)))/(m+n)

注意: a,b,c 代表“商品”。

ra 代表“商品的打分值”。

ra->b  代表“A组到B组的平均差(均值化)”。

m,n 代表人数。

根据公式,我们来算一下。

r王五 = (2 * (4 - R(洗衣机->彩电)) + 2 * (10 - R(电冰箱->彩电))+ 2 * (5 - R(空调->彩电)))/(2+2+2)=6.8

是的,slopeOne就是这么简单,实战效果非常不错。

二:实现

1:定义一个评分类Rating。

 1     /// <summary>
 2     /// 评分实体类
 3     /// </summary>
 4     public class Rating
 5     {
 6         /// <summary>
 7         /// 记录差值
 8         /// </summary>
 9         public float Value { get; set; }
10
11         /// <summary>
12         /// 记录评分人数,方便公式中的 m 和 n 的值
13         /// </summary>
14         public int Freq { get; set; }
15
16         /// <summary>
17         /// 记录打分用户的ID
18         /// </summary>
19         public HashSet<int> hash_user = new HashSet<int>();
20
21         /// <summary>
22         /// 平均值
23         /// </summary>
24         public float AverageValue
25         {
26             get { return Value / Freq; }
27         }
28     }

2: 定义一个产品类

 1     /// <summary>
 2     /// 产品类
 3     /// </summary>
 4     public class Product
 5     {
 6         public int ProductID { get; set; }
 7
 8         public string ProductName { get; set; }
 9
10         /// <summary>
11         /// 对产品的打分
12         /// </summary>
13         public float Score { get; set; }
14     }

3:SlopeOne类

参考了网络上的例子,将二维矩阵做成线性表,有效的降低了空间复杂度。

  1 using System;
  2 using System.Collections.Generic;
  3 using System.Linq;
  4 using System.Text;
  5
  6 namespace SupportCenter.Test
  7 {
  8     #region Slope One 算法
  9     /// <summary>
 10     /// Slope One 算法
 11     /// </summary>
 12     public class SlopeOne
 13     {
 14         /// <summary>
 15         /// 评分系统
 16         /// </summary>
 17         public static Dictionary<int, Product> dicRatingSystem = new Dictionary<int, Product>();
 18
 19         public Dictionary<string, Rating> dic_Martix = new Dictionary<string, Rating>();
 20
 21         public HashSet<int> hash_items = new HashSet<int>();
 22
 23         #region 接收一个用户的打分记录
 24         /// <summary>
 25         /// 接收一个用户的打分记录
 26         /// </summary>
 27         /// <param name="userRatings"></param>
 28         public void AddUserRatings(IDictionary<int, List<Product>> userRatings)
 29         {
 30             foreach (var user1 in userRatings)
 31             {
 32                 //遍历所有的Item
 33                 foreach (var item1 in user1.Value)
 34                 {
 35                     //该产品的编号(具有唯一性)
 36                     int item1Id = item1.ProductID;
 37
 38                     //该项目的评分
 39                     float item1Rating = item1.Score;
 40
 41                     //将产品编号字存放在hash表中
 42                     hash_items.Add(item1.ProductID);
 43
 44                     foreach (var user2 in userRatings)
 45                     {
 46                         //再次遍历item,用于计算俩俩 Item 之间的差值
 47                         foreach (var item2 in user2.Value)
 48                         {
 49                             //过滤掉同名的项目
 50                             if (item2.ProductID <= item1Id)
 51                                 continue;
 52
 53                             //该产品的名字
 54                             int item2Id = item2.ProductID;
 55
 56                             //该项目的评分
 57                             float item2Rating = item2.Score;
 58
 59                             Rating ratingDiff;
 60
 61                             //用表的形式构建矩阵
 62                             var key = Tools.GetKey(item1Id, item2Id);
 63
 64                             //将俩俩 Item 的差值 存放到 Rating 中
 65                             if (dic_Martix.Keys.Contains(key))
 66                                 ratingDiff = dic_Martix[key];
 67                             else
 68                             {
 69                                 ratingDiff = new Rating();
 70                                 dic_Martix[key] = ratingDiff;
 71                             }
 72
 73                             //方便以后以后userrating的编辑操作,(add)
 74                             if (!ratingDiff.hash_user.Contains(user1.Key))
 75                             {
 76                                 //value保存差值
 77                                 ratingDiff.Value += item1Rating - item2Rating;
 78
 79                                 //说明计算过一次
 80                                 ratingDiff.Freq += 1;
 81                             }
 82
 83                             //记录操作人的ID,方便以后再次添加评分
 84                             ratingDiff.hash_user.Add(user1.Key);
 85                         }
 86                     }
 87                 }
 88             }
 89         }
 90         #endregion
 91
 92         #region 根据矩阵的值,预测出该Rating中的值
 93         /// <summary>
 94         /// 根据矩阵的值,预测出该Rating中的值
 95         /// </summary>
 96         /// <param name="userRatings"></param>
 97         /// <returns></returns>
 98         public IDictionary<int, float> Predict(List<Product> userRatings)
 99         {
100             Dictionary<int, float> predictions = new Dictionary<int, float>();
101
102             var productIDs = userRatings.Select(i => i.ProductID).ToList();
103
104             //循环遍历_Items中所有的Items
105             foreach (var itemId in this.hash_items)
106             {
107                 //过滤掉不需要计算的产品编号
108                 if (productIDs.Contains(itemId))
109                     continue;
110
111                 Rating itemRating = new Rating();
112
113                 // 内层遍历userRatings
114                 foreach (var userRating in userRatings)
115                 {
116                     if (userRating.ProductID == itemId)
117                         continue;
118
119                     int inputItemId = userRating.ProductID;
120
121                     //获取该key对应项目的两组AVG的值
122                     var key = Tools.GetKey(itemId, inputItemId);
123
124                     if (dic_Martix.Keys.Contains(key))
125                     {
126                         Rating diff = dic_Martix[key];
127
128                         //关键点:运用公式求解(这边为了节省空间,对角线两侧的值呈现奇函数的特性)
129                         itemRating.Value += diff.Freq * (userRating.Score + diff.AverageValue * ((itemId < inputItemId) ? 1 : -1));
130
131                         //关键点:运用公式求解 累计每两组的人数
132                         itemRating.Freq += diff.Freq;
133                     }
134                 }
135
136                 predictions.Add(itemId, itemRating.AverageValue);
137             }
138
139             return predictions;
140         }
141         #endregion
142     }
143     #endregion
144
145     #region 工具类
146     /// <summary>
147     /// 工具类
148     /// </summary>
149     public class Tools
150     {
151         public static string GetKey(int Item1Id, int Item2Id)
152         {
153             return (Item1Id < Item2Id) ? Item1Id + "->" + Item2Id : Item2Id + "->" + Item1Id;
154         }
155     }
156     #endregion
157 }

4: 测试类Program

这里我们灌入了userid=1000,2000,3000的这三个人,然后我们预测userID=3000这个人对 “彩电” 的打分会是多少?

 1     public class Program
 2     {
 3         static void Main(string[] args)
 4         {
 5             SlopeOne test = new SlopeOne();
 6
 7             Dictionary<int, List<Product>> userRating = new Dictionary<int, List<Product>>();
 8
 9             //第一位用户
10             List<Product> list = new List<Product>()
11             {
12                 new Product(){ ProductID=1, ProductName="洗衣机",Score=5},
13                 new Product(){ ProductID=2, ProductName="电冰箱", Score=10},
14                 new Product(){ ProductID=3, ProductName="彩电", Score=10},
15                 new Product(){ ProductID=4, ProductName="空调", Score=5},
16             };
17
18             userRating.Add(1000, list);
19
20             test.AddUserRatings(userRating);
21
22             userRating.Clear();
23             userRating.Add(1000, list);
24
25             test.AddUserRatings(userRating);
26
27             //第二位用户
28             list = new List<Product>()
29             {
30                 new Product(){ ProductID=1, ProductName="洗衣机",Score=4},
31                 new Product(){ ProductID=2, ProductName="电冰箱", Score=5},
32                 new Product(){ ProductID=3, ProductName="彩电", Score=4},
33                  new Product(){ ProductID=4, ProductName="空调", Score=10},
34             };
35
36             userRating.Clear();
37             userRating.Add(2000, list);
38
39             test.AddUserRatings(userRating);
40
41             //第三位用户
42             list = new List<Product>()
43             {
44                 new Product(){ ProductID=1, ProductName="洗衣机", Score=4},
45                 new Product(){ ProductID=2, ProductName="电冰箱", Score=10},
46                 new Product(){ ProductID=4, ProductName="空调", Score=5},
47             };
48
49             userRating.Clear();
50             userRating.Add(3000, list);
51
52             test.AddUserRatings(userRating);
53
54             //那么我们预测userID=3000这个人对 “彩电” 的打分会是多少?
55             var userID = userRating.Keys.FirstOrDefault();
56             var result = userRating[userID];
57
58             var predictions = test.Predict(result);
59
60             foreach (var rating in predictions)
61                 Console.WriteLine("ProductID= " + rating.Key + " Rating: " + rating.Value);
62         }
63     }

时间: 2024-10-13 23:31:39

经典算法题每日演练——第六题 协同推荐SlopeOne 算法的相关文章

经典算法题每日演练——第三题 猴子吃桃

原文:经典算法题每日演练--第三题 猴子吃桃 猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾就多吃了一个.第二天早上又将剩下的桃子吃了一半,还是不过瘾又多 吃了一个.以后每天都吃前一天剩下的一半再加一个.到第10天刚好剩一个.问猴子第一天摘了多少个桃子? 分析: 这是一套非常经典的算法题,这个题目体现了算法思想中的递推思想,递归有两种形式,顺推和逆推,针对递推,只要 我们找到递推公式,问题就迎刃而解了. 令S10=1,容易看出 S9=2(S10+1), 简化一下 S9=2S10+2 S8=2S

经典算法题每日演练——第二十题 三元组

原文:经典算法题每日演练--第二十题 三元组 我们知道矩阵是一个非常强大的数据结构,在动态规划以及各种图论算法上都有广泛的应用,当然矩阵有着不足的地方就是空间和时间 复杂度都维持在N2上,比如1w个数字建立一个矩阵,在内存中会占用1w*1w=1亿的类型空间,这时就会遇到outofmemory...那么面 临的一个问题就是如何来压缩矩阵,当然压缩的方式有很多种,这里就介绍一个顺序表的压缩方式:三元组. 一:三元组 有时候我们的矩阵中只有零星的一些非零元素,其余的都是零元素,那么我们称之为稀疏矩阵,

经典算法题每日演练——第十七题 Dijkstra算法

原文:经典算法题每日演练--第十七题 Dijkstra算法 或许在生活中,经常会碰到针对某一个问题,在众多的限制条件下,如何去寻找一个最优解?可能大家想到了很多诸如“线性规划”,“动态规划” 这些经典策略,当然有的问题我们可以用贪心来寻求整体最优解,在图论中一个典型的贪心法求最优解的例子就莫过于“最短路径”的问题. 一:概序 从下图中我要寻找V0到V3的最短路径,你会发现通往他们的两点路径有很多:V0->V4->V3,V0->V1->V3,当然你会认为前者是你要找的最短 路径,那如

经典算法题每日演练——第七题 KMP算法

原文:经典算法题每日演练--第七题 KMP算法 在大学的时候,应该在数据结构里面都看过kmp算法吧,不知道有多少老师对该算法是一笔带过的,至少我们以前是的, 确实kmp算法还是有点饶人的,如果说红黑树是变态级的,那么kmp算法比红黑树还要变态,很抱歉,每次打kmp的时候,输 入法总是提示“看毛片”三个字,嘿嘿,就叫“看毛片算法”吧. 一:BF算法 如果让你写字符串的模式匹配,你可能会很快的写出朴素的bf算法,至少问题是解决了,我想大家很清楚的知道它的时间复 杂度为O(MN),原因很简单,主串和模

经典算法题每日演练——第二十一题 十字链表

原文:经典算法题每日演练--第二十一题 十字链表 上一篇我们看了矩阵的顺序存储,这篇我们再看看一种链式存储方法“十字链表”,当然目的都是一样,压缩空间. 一:概念 既然要用链表节点来模拟矩阵中的非零元素,肯定需要如下5个元素(row,col,val,down,right),其中: row:矩阵中的行. col:矩阵中的列. val:矩阵中的值. right:指向右侧的一个非零元素. down:指向下侧的一个非零元素. 现在我们知道单个节点该如何表示了,那么矩阵中同行的非零元素的表示不就是一个单链

经典算法题每日演练——第十三题 赫夫曼树

原文:经典算法题每日演练--第十三题 赫夫曼树 赫夫曼树又称最优二叉树,也就是带权路径最短的树,对于赫夫曼树,我想大家对它是非常的熟悉,也知道它的应用场景, 但是有没有自己亲手写过,这个我就不清楚了,不管以前写没写,这一篇我们来玩一把. 一:概念 赫夫曼树里面有几个概念,也是非常简单的,先来看下面的图: 1. 基础概念 <1>  节点的权: 节点中红色部分就是权,在实际应用中,我们用“字符”出现的次数作为权. <2>  路径长度:可以理解成该节点到根节点的层数,比如:“A”到根节点

经典算法题每日演练——第五题 字符串相似度

原文:经典算法题每日演练--第五题 字符串相似度 这篇我们看看最长公共子序列的另一个版本,求字符串相似度(编辑距离),我也说过了,这是一个非常实用的算法,在DNA对比,网 页聚类等方面都有用武之地. 一:概念 对于两个字符串A和B,通过基本的增删改将字符串A改成B,或者将B改成A,在改变的过程中我们使用的最少步骤称之为“编辑距离”. 比如如下的字符串:我们通过种种操作,痉挛之后编辑距离为3,不知道你看出来了没有? 二:解析 可能大家觉得有点复杂,不好理解,我们试着把这个大问题拆分掉,将"字符串

经典算法题每日演练——第二十三题 鸡尾酒排序

原文:经典算法题每日演练--第二十三题 鸡尾酒排序 这篇我们继续扯淡一下鸡尾酒排序,为了知道为啥取名为鸡尾酒,特意看了下百科,见框框的话,也只能勉强这么说了. 要是文艺点的话,可以说是搅拌排序,通俗易懂点的话,就叫“双向冒泡排序”,我想作为码农的话,不可能不知道冒泡排序, 冒泡是一个单向的从小到大或者从大到小的交换排序,而鸡尾酒排序是双向的,从一端进行从小到大排序,从另一端进行从大 到小排序. 从图中可以看到,第一次正向比较,我们找到了最大值9. 第一次反向比较,我们找到了最小值1. 第二次正向

经典算法题每日演练——第十题 树状数组

原文:经典算法题每日演练--第十题 树状数组 有一种数据结构是神奇的,神秘的,它展现了位运算与数组结合的神奇魅力,太牛逼的,它就是树状数组,这种数据结构不是神人是发现不了的. 一:概序 假如我现在有个需求,就是要频繁的求数组的前n项和,并且存在着数组中某些数字的频繁修改,那么我们该如何实现这样的需求?当然大家可以往 真实项目上靠一靠. ① 传统方法:根据索引修改为O(1),但是求前n项和为O(n). ②空间换时间方法:我开一个数组sum[],sum[i]=a[1]+....+a[i],那么有点意