HDU1573:X问题(解一元线性同余方程组)

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1573

题目解析;HDU就是坑,就是因为n,m定义成了__int64就WAY,改成int就A了,无语。

这题就是求解一元线性同余方程组的解满组小于正整数n的数目。最小正整数的解为X=(X*(c/d)%t+t)%t;
  X=a1*X+r1;其中X为扩展欧几里得解出来的特解,这m个方程组的循环区间为lcm(a1,a2,a3...am),
所以答案为(n-X)/lcm+1;

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
__int64 a,b,c,d;
__int64 X,Y;
__int64 gcd(__int64 A,__int64 B)
{
    return B==0?A:gcd(B,A%B);
}
void extend(__int64 A,__int64 B,__int64 &d,__int64 &x1,__int64 &y1)
{
    if(B==0)
    {
        x1=1;
        y1=0;
        d=A;
        return ;
    }
    extend(B,A%B,d,x1,y1);
    __int64 temp=x1;
    x1=y1;
    y1=temp-(A/B)*y1;
    return ;
}
int main()
{
    __int64 S[120],E[120];
    __int64 a1,r1,a2,r2,Lcm;
    __int64 T;
    int n,m;
    scanf("%I64d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        Lcm=1;
        for(int i=1; i<=m; i++)
        {
            scanf("%I64d",&S[i]);
            Lcm=Lcm/gcd(Lcm,S[i])*S[i];//在一定程度上可以防止爆类型(Lcm*S[i]/gcd())
        }
        for(int i=1; i<=m; i++)
        {
            scanf("%I64d",&E[i]);
        }
        bool ifhave=true;
        a1=S[1],r1=E[1];
        for(__int64 i=2; i<=m; i++)
        {
            a2=S[i],r2=E[i];
            a=a1;
            b=a2;
            c=r2-r1;
            extend(a,b,d,X,Y);
            if(c%d)
            {
                ifhave=false;
                break;
            }
            __int64 t=b/d;
            X=(X*(c/d)%t+t)%t;
            X=a1*X+r1;
            a1=a1*(a2/d);
            r1=X;
        }
        __int64 ans=0;
        if(!ifhave)
        {
            printf("0\n");
            continue;
        }
        if(r1<=n) ans=1+(n-r1)/Lcm;
        if(r1==0&&ans)
            ans--;
        printf("%I64d\n",ans);
    }
    return  0;
}
时间: 2024-10-11 08:25:32

HDU1573:X问题(解一元线性同余方程组)的相关文章

HDU1573 X问题【一元线性同余方程组】

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1573 题目大意: 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mod a[i] = b[i], - (0 < a[i] <= 10). 思路: 先求出数组b[]中所有数的最小公倍数lcm,再求解出该一元线性同余方程组在lcm范围内的解为a,题目要 求解x是小于等于N的正整数,则

HDU3579:Hello Kiki(解一元线性同余方程组)

题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lcm(a1,a2,a3,...an). 别的就没什么注意的了. #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <math.h&

(解一元线性同余方程组)

转载: /**********************一般模线性方程组***********************/ 同样是求这个东西.. X mod m1=r1 X mod m2=r2 ... ... ... X mod mn=rn 首先,我们看两个式子的情况 X mod m1=r1……………………………………………………………(1) X mod m2=r2……………………………………………………………(2) 则有 X=m1*k1+r1………………………………………………………………(*)

求解一元线性同余方程组模版

解法:直接上模版. 扩展欧几里德的模版: typedef long long LL; LL ex_gcd(LL a,LL b,LL &x,LL &y) { if(b==0) { x=1; y=0; return a; } LL d=ex_gcd(b,a%b,x,y); LL t=x; x=y; y=t-a/b*y; return d; } 求解一元线性同余方程组模版: LL solve(LL n) { LL a1,r1,a2,r2; LL a,b,c,r,x,y; bool ifhave=

HDU3579 Hello Kiki【一元线性同余方程组】

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目大意: Kiki有X个硬币,她用不同的方式数了N次,每次她把硬币分成大小相等的组,记录每次一组硬币 的个数Mi和数完最后剩余的硬币数Ai.那么问题来了:总共有多少枚硬币? 思路: 典型的一元线性同余方程组X = Ai(mod Mi)求解.题目要求输出最小正整数解,则如果求得同余 方程组的解为0,那么答案就是所有Mi的最小公倍数. AC代码: #include<iostream> #in

POJ2891 Strange Way to Express Integers【一元线性同余方程组】

题目链接: http://poj.org/problem?id=2891 题目大意: 选择k个不同的正整数a1.a2.-.ak,对于某个整数m分别对ai求余对应整数ri,如果 适当选择a1.a2.-.ak,那么整数m可由整数对组合(ai,ri)唯一确定. 若已知a1.a2.-.ak以及m,很容易确定所有的整数对(ai,ri),但是题目是已知a1. a2.-.ak以及所有的整数对(ai,ri),求出对应的非负整数m的值. 思路: 题目可以转换为给定一系列的一元线性方程 x ≡ r1( mod a1

HDU 1573 X问题(一元线性同余方程组)

X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3850    Accepted Submission(s): 1228 Problem Description 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mo

POJ 2891 Strange Way to Express Integers(一元线性同余方程组模版题)

题意:给出n个模方程组:x mod ai = ri.求x的最小正值.如果不存在这样的x,那么输出-1. 涉及的数论知识: 对于一般式ax ≡ b(mod m) 当a=1时,两个同余方程就可以合并成一个同余方程 比如对于本题: x mod a1=r1 x mod a2=r2 有不定方程: x=r2+a2*y2 x=r2+a2*y2 联立: a1y1+a2*(-y2)=r2-r1 可以通过扩展gcd求解出y1,回带解得特解(x*) 所以通解是满足合并后的同余方程的所有同余类解:x mod (lcm(

利用中国剩余定理(求解一元线性同余方程组)