Tensorflow学习教程------普通神经网络对mnist数据集分类

首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元

代码如下

#coding:utf-8
import  tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch =  mnist.train.num_examples // batch_size

#定义两个placeholder
x = tf.placeholder(tf.float32, [None,784]) #输入图像
y = tf.placeholder(tf.float32, [None,10]) #输入标签

#创建一个简单的神经网络 784个像素点对应784个数  因此输入层是784个神经元 输出层是10个神经元 不含隐层
#最后准确率在92%左右
W = tf.Variable(tf.zeros([784,10])) #生成784行 10列的全0矩阵
b = tf.Variable(tf.zeros([1,10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b)

#二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#初始化变量
init = tf.global_variables_initializer()

#结果存放在布尔型列表中
#argmax能给出某个tensor对象在某一维上的其数据最大值所在的索引值
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
    sess.run(init)
    for epoch in range(21): #21个epoch 把所有的图片训练21次
        for batch in range(n_batch): #
            batch_xs,batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images, y:mnist.test.labels})
        print ("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))   

结果如下

Iter 0,Testing Accuracy 0.8304
Iter 1,Testing Accuracy 0.8704
Iter 2,Testing Accuracy 0.8821
Iter 3,Testing Accuracy 0.8876
Iter 4,Testing Accuracy 0.8932
Iter 5,Testing Accuracy 0.8968
Iter 6,Testing Accuracy 0.8995
Iter 7,Testing Accuracy 0.9019
Iter 8,Testing Accuracy 0.9033
Iter 9,Testing Accuracy 0.9048
Iter 10,Testing Accuracy 0.9065
Iter 11,Testing Accuracy 0.9074
Iter 12,Testing Accuracy 0.9084
Iter 13,Testing Accuracy 0.909
Iter 14,Testing Accuracy 0.9094
Iter 15,Testing Accuracy 0.9112
Iter 16,Testing Accuracy 0.9117
Iter 17,Testing Accuracy 0.9128
Iter 18,Testing Accuracy 0.9127
Iter 19,Testing Accuracy 0.9132
Iter 20,Testing Accuracy 0.9144

接下来是含一个隐层的神经网络,输入层是784个神经元,两个隐层都是100个神经元,输出层是10个神经元,迭代500次,最后准确率在88%左右,汗。。。。准确率反而降低了,慢慢调参吧

#coding:utf-8
import  tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#每个批次的大小
batch_size = 50
#计算一共有多少个批次
n_batch =  mnist.train.num_examples // batch_size

#定义两个placeholder
x = tf.placeholder(tf.float32, [None,784]) #输入图像
y = tf.placeholder(tf.float32, [None,10]) #输入标签

#定义神经网络中间层
Weights_L1 = tf.Variable(tf.random_normal([784,100]))
biase_L1 = tf.Variable(tf.zeros([1,100]))
Wx_plus_b_L1 = tf.matmul(x, Weights_L1)+biase_L1
L1 = tf.nn.tanh(Wx_plus_b_L1) #使用正切函数作为激活函数 

Weights_L2 = tf.Variable(tf.random_normal([100,100]))
biase_L2 = tf.Variable(tf.zeros([1,100]))
Wx_plus_b_L2 = tf.matmul(L1, Weights_L2)+biase_L2
L2 = tf.nn.tanh(Wx_plus_b_L2) #使用正切函数作为激活函数 

#定义神经网络输出层
Weights_L3 = tf.Variable(tf.random_normal([100,10]))
biase_L3 = tf.Variable(tf.zeros([1,10]))
Wx_plus_b_L3 = tf.matmul(L2,Weights_L3) + biase_L3
prediction = tf.nn.tanh(Wx_plus_b_L3)

#二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#初始化变量
init = tf.global_variables_initializer()

#结果存放在布尔型列表中
#argmax能给出某个tensor对象在某一维上的其数据最大值所在的索引值
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
    sess.run(init)
    for epoch in range(500):
        for batch in range(n_batch):             batch_xs,batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images, y:mnist.test.labels})
        print ("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))   

Iter 487,Testing Accuracy 0.8847
Iter 488,Testing Accuracy 0.8853
Iter 489,Testing Accuracy 0.878
Iter 490,Testing Accuracy 0.8861
Iter 491,Testing Accuracy 0.8863
Iter 492,Testing Accuracy 0.8784
Iter 493,Testing Accuracy 0.8855
Iter 494,Testing Accuracy 0.8787
Iter 495,Testing Accuracy 0.881
Iter 496,Testing Accuracy 0.8837
Iter 497,Testing Accuracy 0.8817
Iter 498,Testing Accuracy 0.8837
Iter 499,Testing Accuracy 0.8866

原文地址:https://www.cnblogs.com/shuimuqingyang/p/9962541.html

时间: 2024-10-17 22:21:05

Tensorflow学习教程------普通神经网络对mnist数据集分类的相关文章

deep_learning_LSTM长短期记忆神经网络处理Mnist数据集

1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2.LSTM(Long Short Term Memory)长短期记忆神经网络模型 详见LSTM长短期记忆神经网络:http://www.cnblogs.com/pinard/p/6519110.html 3.LSTM长短期记忆神经网络处理Mnist数据集 1 2 3 4 5 6 7 8 9 10 11

利用keras搭建CNN进行mnist数据集分类

当接触深度学习算法的时候,大家都很想自己亲自实践一下这个算法,但是一想到那些复杂的程序,又感觉心里面很累啊,又要学诸如tensorflow.theano这些框架.那么,有没有什么好东西能够帮助我们快速搭建这个算法呢?当然是有咯!,现如今真不缺少造轮子的大神,so,我强烈向大家推荐keras,Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow或Theano.Keras为支持快速实验而生,能够把你的idea迅速转换为结果. 具体keras的安装与使用,请参

Tensorflow学习教程------利用卷积神经网络对mnist数据集进行分类_训练模型

原理就不多讲了,直接上代码,有详细注释. #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每个批次的大小 batch_size = 100 n_batch = mnist.train._num_examples // batch_

Tensorflow学习教程------lenet多标签分类

本文在上篇的基础上利用lenet进行多标签分类.五个分类标准,每个标准分两类.实际来说,本文所介绍的多标签分类属于多任务学习中的联合训练,具体代码如下. #coding:utf-8 import tensorflow as tf import os def read_and_decode(filename): #根据文件名生成一个队列 filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecordR

Tensorflow学习教程------tfrecords数据格式生成与读取

首先是生成tfrecords格式的数据,具体代码如下: #coding:utf-8 import os import tensorflow as tf from PIL import Image cwd = os.getcwd() ''' 此处我加载的数据目录如下: bt -- 14018.jpg 14019.jpg 14020.jpg nbt -- 1_ddd.jpg 1_dsdfs.jpg 1_dfd.jpg 这里的bt nbt 就是类别,也就是代码中的classes ''' writer

基于tensorflow的CNN卷积神经网络对Fasion-MNIST数据集的分类器

写一个基于tensorflow的cnn,分类fasion-MNIST数据集 这个就是fasion-mnist数据集了 先上代码,在分析: import tensorflow as tf import pandas as pd import numpy as np config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.3 train_data = pd.read_csv('test.csv'

Ternsorflow 学习:006-MNIST进阶 深入MNIST

前言 这篇文章适合实践过MNIST入门的人学习观看.没有看过MNIST基础的人请移步这里 深入MNIST TensorFlow是一个非常强大的用来做大规模数值计算的库.其所擅长的任务之一就是实现以及训练深度神经网络. 在本教程中,我们将学到构建一个TensorFlow模型的基本步骤,并将通过这些步骤为MNIST构建一个深度卷积神经网络. 这个教程假设你已经熟悉神经网络和MNIST数据集.如果你尚未了解,请查看新手指南. 安装 在创建模型之前,我们会先加载MNIST数据集,然后启动一个Tensor

tensorflow入门教程

1. LSTM 大学之道,在明明德的博客: (译)理解 LSTM 网络 (Understanding LSTM Networks by colah) TensorFlow入门(五)多层 LSTM 通俗易懂版 TensorFlow入门(三)多层 CNNs 实现 mnist分类 另一个博客,写的代码很好: TensorFlow 实现多层 LSTM 的 MNIST 分类 + 可视化 博客:写的很好 用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 博客: Tensorflow

【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型

初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构建CNN[待学习] 全连接+各种优化[待学习] BN层[待学习] 先解释以下MNIST数据集,训练数据集有55,000 条,即X为55,000 * 784的矩阵,那么Y为55,000 * 10的矩阵,每个图片是28像素*28像素,带有标签,Y为该图片的真实数字,即标签,每个图片10个数字,1所在位置