排序算法(二)选择排序---堆排序

 概念:利用树结构进行排序。

 分类:1、大顶堆: 每个小树的根节点都大于子节点     升序排序使用大顶堆

    2、小顶堆:每个小树的子节点都大于根节点   降序排序使用小顶堆

 

 1 public class HeapSort {
 2
 3     public static void main(String[] args){
 4         int[] arr=new int[]{9,6,7,0,1,10,4,2};
 5         System.out.println(Arrays.toString(arr));
 6         heapSort(arr);
 7         System.out.println(Arrays.toString(arr));
 8     }
 9
10     public static void heapSort(int[] arr){
11             //开始位置是最后一个非叶子节点,即最后一个节点的父节点
12             int start=(arr.length-1)/2;
13             //调整为大顶堆
14             for(int i=start;i>=0;i--){
15                 maxHeap(arr,arr.length,i);
16             }
17             //先把数组中的第0个和堆中最后一个数交换位置,再把前面的处理为     大顶堆
18             for(int i=arr.length-1;i>0;i--){
19                 int temp=arr[0];
20                 arr[0]=arr[i];
21                 arr[i]=temp;
22                 maxHeap(arr,i,0);
23             }
24     }
25
26     // size:数组在后面依次先前遍历                        当前节点
27     public static void maxHeap(int[] arr,int size,int index){
28         //左子节点
29         int leftNode=2*index+1;
30         //右子节点
31         int rightNode=2*index+2;
32         int max=index;
33         //和两个子节点分别对比,找出最大的节点
34         if(leftNode<size&&arr[leftNode]>arr[max]){
35             max=leftNode;
36         }
37         if(rightNode<size&&arr[rightNode]>arr[max]){
38             max=rightNode;
39         }
40         //交换位置
41         if(max!=index){
42             int temp=arr[index];
43             arr[index]=arr[max];
44             arr[max]=temp;
45             //交换位置以后,可能会破坏之前排好的堆,所以,
46             maxHeap(arr,size,max);
47         }
48
49
50     }
51 }
52          

原文地址:https://www.cnblogs.com/axu521/p/9986371.html

时间: 2024-08-29 13:15:48

排序算法(二)选择排序---堆排序的相关文章

[排序算法二]选择排序

选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理是:第一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小(大)元素,然后放到已排序的序列的末尾.以此类推,直到全部待排序的数据元素的个数为零.选择排序是不稳定的排序方法. 算法性能 时间复杂度:O(n^2),总循环次数 n(n-1)/2.数据交换次数 O(n),这点上来说比冒泡排序要好,因为冒泡是把数据一位一位的移上来,而选择排序只需要在子循环结束后移动一次

排序算法之选择排序

一. 算法描述 选择排序:在一个长度为N的无序数组中,在第一趟遍历N个数据,找出其中最小的数值与第一个元素交换,第二趟遍历剩下的N-1个数据,找出其中最小的数值与第二个元素交换......第N-1趟遍历剩下的2个数据,找出其中最小的数值与第N-1个元素交换,至此选择排序完成. 二. 算法分析 平均时间复杂度:O(n2) 空间复杂度:O(1)  (用于交换和记录索引) 稳定性:不稳定 (比如序列[5, 5, 3]第一趟就将第一个[5]与[3]交换,导致第一个5挪动到第二个5后面) 三. 算法实现

数据结构排序算法之选择排序

今天继续介绍一种排序算法:选择排序. 选择排序的基本思想就是从待排序列中选择出最小的,然后将被选出元素和序列的第一个元素互换位置(当前默认是升序排列),则互换完成后第一个元素就是整个序列的最小的元素,则一次选择排序结束.然后我们从剩下的子序列中选择出最小的,然后将该被选出来的元素和该子序列的第一个元素(即整个序列的第二个元素)互换位置,则当前整个序列的第二个元素就是当前序列中的次最小值,第二次选择排序结束.以此类推,直到该待排序列只剩下一个元素后,则整个序列有序. 具体过程如下图所示: 下面就不

【排序算法】选择排序(Selection sort)

0. 说明 选择排序(Selection sort)是一种简单直观的排序算法. 它的工作原理如下. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾.以此类推,直到所有元素均排序完毕. 选择排序的主要优点与数据移动有关.如果某个元素位于正确的最终位置上,则它不会被移动.选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对 n 个元素的表进行排序总共进行至多 n-1 次交换.在所有的完全依

初级排序算法之选择排序

初级排序算法 本质是对要排序的数组进行嵌套循环,内层循环负责局部的排序,外层循环负责剩余的无序元素的递减.所以你只要理解嵌套循环和比较大小就能很快的掌握初级排序算法. 选择排序 一个无序的数组 a = [0, 4, 6, 3, 8, 2, 3, 9], 你也可以把a的元素想象成任何现实中可比较的具体物体.例如,有10根长短不一的木条,我们如何对它们进行排序?一个最直接的思想,先拿出最短的放到最前面,在剩余的木条中再拿出最短的放在第二位...直到最后一根木条.从中我们可以看出,1. 我们需要再一次

【排序算法】选择排序

选择排序算法原理 选择排序算法时间复杂度分析 选择排序算法稳定性分析 选择排序算法C语言代码 #include <stdio.h> //交换两个元素的值 void swap(int* a, int* b) { int temp; temp = *a; *a = *b; *b = temp; } void selectionSort(int arr[], int length) { int i, j, maxIndex; for(i = length; i > 0; i--) { //假设

选择排序算法---直接选择排序和堆排序

本文主要是解析选择排序算法:直接选择排序和堆排序. 一.直接选择排序   基本思想:       选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理如下.首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾.以此类推,直到所有元素均排序完毕. 选择排序的主要优点与数据移动有关.如果某个元素位于正确的最终位置上,则它不会被移动.选择排序每次交换一对元素,它们当中至少有一个将被移到其最终

算法学习之排序算法:选择排序

选择排序:每一趟在n-i+1(i=1,2,...,n-1)个记录中选取关键字最小的记录作为有序序列中第i个记录. 一.简单选择排序 一趟选择排序操作: 通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之. 对L[1...n]中记录进行简单选择排序的算法为:令i从1至n-1,进行n-1趟选择操作.简单选择排序过程中,所需进行记录移动的操作次数较少,然而,无论记录的初始排列如何,所需关键字间的比较次数相同.因此,总的时间复杂度为O(n^2)

排序算法——直接选择排序

直接选择排序每一趟排序都会从未排序的序列中选择出最小的元素来,然后跟未排序序列的第一个元素交换.这样经过n-1趟排序后,每趟排序选择出的 最小元素便成了有序的序列. 算法实现如下: #include <stdio.h> #include <stdlib.h> void SelectSort(int A[],int n) { int i, j, index, temp; for(i = 0; i < n-1; i++) // 进行n-1趟排序 { index = i; // 辅