卡尔曼滤波(Kalman Filter)原理与公式推导

一、背景---卡尔曼滤波的意义

随着传感技术、机器人、自动驾驶以及航空航天等技术的不断发展,对控制系统的精度及稳定性的要求也越来越高。卡尔曼滤波作为一种状态最优估计的方法,其应用也越来越普遍,如在无人机、机器人等领域均得到了广泛应用。

对于Kalman Filter的理解,用过的都知道“黄金五条”公式,且通过“预测”与“更新”两个过程来对系统的状态进行最优估计,但完整的推导过程却不一定能写出来,希望通过此文能对卡尔曼滤波的原理及状态估计算法有更一步的理解。

原文地址:https://www.cnblogs.com/imdong/p/10015599.html

时间: 2024-10-11 16:02:36

卡尔曼滤波(Kalman Filter)原理与公式推导的相关文章

无人驾驶技术之Kalman Filter原理介绍

基本思想 以K-1时刻的最优估计Xk-1为准,预测K时刻的状态变量Xk/k-1,同时又对该状态进行观测,得到观测变量Zk,再在预测与观之间进行分析,或者说是以观测量对预测量进行修正,从而得到K时刻的最优状态估计Xk. 具体实例 设一个机器人有两个状态量,分别为位置P,速度V.在这里记为: 卡尔曼滤波假设两个变量(位置和速度,在这个例子中)都是随机的,并且服从高斯分布.每个变量都有一个均值μ,表示随机分布的中心(最可能的状态),以及方差 ,表示不确定性.其中,位置和速度之间可以是相关的也可以是不相

关于卡尔曼滤波(Kalman Filter)的很好讲解

http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies C#代码: 1 double[] Data = new double[] { 0.39, 0.50, 0.48, 0.29, 0.25, 0.32, 0.34, 0.48, 0.41, 0.45 }; 2 private void kalman() 3 { 4 sb = new StringBuilder(); 5 for(int j=0;j<50;j++) 6 for (int

Kalman Filter、Extended Kalman Filter以及Unscented Kalman Filter介绍

模型定义 如上图所示,卡尔曼滤波(Kalman Filter)的基本模型和隐马尔可夫模型类似,不同的是隐马尔科夫模型考虑离散的状态空间,而卡尔曼滤波的状态空间以及观测空间都是连续的,并且都属于高斯分布,因此卡尔曼滤波又称为linear Gaussian Markov model,它的数学定义如下:$$\underbrace{s_{t}=C s_{t-1}+G h_{t}+\gamma_{t}}_{\text { latent process }}, \quad \underbrace{x_{t}

卡尔曼滤波(Kalman Filter) 的进一步讨论

我们在上一篇文章中通过一个简单的例子算是入门卡尔曼滤波了,本文将以此为基础讨论一些技术细节. 卡尔曼滤波(Kalman Filter) http://blog.csdn.net/baimafujinji/article/details/50646814 在上一篇文章中,我们已经对HMM和卡尔曼滤波的关联性进行了初步的讨论.参考文献[3]中将二者之间的关系归结为下表. 上表是什么意思呢?我们其实可以下面的式子来表示,其中,w 和 v 分别表示状态转移 和 测量 过程中的不确定性,也即是噪声,既然是

卡尔曼滤波(Kalman Filter)在目标边框预测中的应用

1.卡尔曼滤波的导论 卡尔曼滤波器(Kalman Filter),是由匈牙利数学家Rudolf Emil Kalman发明,并以其名字命名.卡尔曼出生于1930年匈牙利首都布达佩斯.1953,1954年分别获得麻省理工学院的电机工程学士以及硕士学位.1957年于哥伦比亚大学获得博士学位.卡尔曼滤波器是其在博士期间的研究成果,他的博士论文是<A New Approach to Linear Filtering and Prediction Problem>[1]. 卡尔曼滤波器是一个最优化自回归

GMM+Kalman Filter+Blob 目标跟踪

转 http://www.cnblogs.com/YangQiaoblog/p/5462453.html ==========图片版============================================================================== ===================================================================================== 最近学习了一下多目标跟踪,看了看Mat

Kalman滤波器原理和实现

Kalman滤波器原理和实现 kalman filter Kalman滤波器的直观理解[1] 假设我们要测量一个房间下一刻钟的温度.据经验判断,房间内的温度不可能短时大幅度变化,也就是说可以依经验认为下一刻钟的温度等于现在的温度.但是经验是存在误差的,下一刻的真实温度可能比我们预测温度上下偏差几度,这个偏差可以认为服从高斯分布.另外我们也可以使用温度计测量温度,但温度计测量的是局部空间的温度,没办法准确的度量整间房子的平均温度.测量值和真实值得偏差也认为服从高斯分布. 现在希望由经验的预测温度和

卡尔曼滤波器 Kalman Filter (转载)

在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”.跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡 尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯.1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位.1957年于哥 伦比亚大学获得博士学位.我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文<A New Approach to Linear Fil

机器人学 —— 机器人感知(Kalman Filter)

对于机器人感知任务而言,经常需要预判物体的运动,保证机器人在物体与自身接触之前进行规避.比如无人机与障碍物的碰撞,足球机器人判断足球的位置.预判的前提是对当前状态进行准确的估计,比如足球的速度,障碍物靠近的速度.一般认为,测量是存在误差的 —— 眼见未必为实. 1.物体的运动学模型 物体的运动学模型使用状态向量来表达.以2维空间的质点运动为例,物体的运动学模型可以表达为 x = [ px py vx vy ]' .其中 px py 表示物体的位置,vx vy 表示物体的速度.如果能够准确估计物体